Search results

Search for "detection" in Full Text gives 804 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • frequency of microfabricated cantilevers combined with high-bandwidth cantilever deflection detection permits video-rate scanning [24], real-time peak force detection [25], or a later artificial intelligence processing of the vast amounts of data acquired during imaging [26][27]. Under vacuum conditions
  • , the resonance frequency-to-stiffness ratio of thin cantilevers proved to be beneficial for the measurement of ultrasmall forces [28] or, in combination with high cantilever quality factors, the detection of small magnetic fields [29]. For the latter, new tip–sample distance control operation modes
  • -nanometer oscillation amplitudes for an improved detection of short-ranged inter-atomic forces [36][37][38]. Despite the success of AFM utilizing microfabricated cantilevers under ambient conditions, early work performed under UHV conditions, and high-sensitivity MFM under vacuum conditions, cantilever
PDF
Album
Full Research Paper
Published 11 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • especially focuses on the recent advancement (2015–2022) in the green synthesis of CDs, their application in metal ions sensing and microbial bioimaging, detection, and viability studies as well as their applications in pathogenic control and plant growth promotion. Keywords: bioimaging; carbon dots; carbon
  • applications [36], tumor marker detection [37], bioanalytical studies [38], biomedical [39][40] and biotechnological applications [3], biosensing and bioimaging [31][32], and fluorescence [41] and photoluminescence processes [42]. Many reviews about CDs obtained from natural resources have been published
  • synthesis of CDs, the effects of surface states on optical properties, the characterization of CDs, metal ion sensing, and biological and agricultural applications of CDs, that is, microbial bioimaging, detection, and viability studies, pathogen control, and plant growth promotion (Figure 1). Review Green
PDF
Album
Review
Published 05 Oct 2022

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • multiple nanostructures, which are grown by molecular beam epitaxy (MBE) [1]. It has been widely used in the fields of free space optical communication [2][3], gas detection [4][5], and biological research [6][7]. Because the QCL is a narrow linewidth and high-power laser working in the mid-infrared to
PDF
Album
Full Research Paper
Published 23 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • paper, including pump-probe KPFM [13][20][43], time-resolved KPFM [11][12][44][45][46][47], fast free force recovery KPFM (G-Mode) [14][48][49][50], intermodulation electrostatic force microscopy (EFM) [42][51], and PeakForce tapping KPFM [52]. The fundamental detection sensitivity to electrostatic
  • forces in KPFM is generally expressed as the minimum detectable CPD [53], and is directly limited by the geometry of the interaction, thermal noise of the cantilever, and the detection noise limits of the AFM [36][54]. Cantilevers have a number of eigenmodes, ωn, where there is a mechanical enhancement
  • loop using phase-based detection [71], frequency sweeps [40][64][72], or bias modulation [10][52][73]. The advantages of CL AM-KPFM are that it is easy to implement, is standard on most commercial AFMs, and has high bias sensitivity [74]. The disadvantages of this technique are that it is limited by
PDF
Full Research Paper
Published 12 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • . EDS detection showed that the synthesized samples exhibited the accurate Fe/Ni atomic ratios as designed. The detailed EDS data was provided in Table S3. The lanthanum, nickel, iron, and oxygen were analyzed from the samples, and the carbon was detected from the carbon tape. MB removal test using
  • , then filtering the samples through a 0.22 µm needle filter. The MB concentrations were evaluated using the UV–vis spectrometer U-2910 (HITACHI, Japan). The detection range was set from 200 to 800 nm. The scanning rate was 400 nm/min. The maximum absorption peaks of MB and TC solution were at 664 nm and
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • specificity and sensibility of ZIKV60 for NS1 may be an innovative tool for novel graphene-based biosensors for ZIKV NS1 protein detection. Experimental NS1 proteins Recombinant Zika virus (Uganda strain), dengue virus (serotypes 1, 2, 3, and 4) and yellow fever virus NS1 proteins expressed in mammalian
  • detection at 214 nm. The NS1–aptamer complexes were collected into a vial containing 8 μL of separation buffer at the capillary outlet. After collecting material from five runs, the bound sequences were amplified by PCR. The PCR amplification was performed using a reaction master mix containing 200 μM dNTPs
  • . The electrical characterization for both demonstration of graphene functionalization with ZIKV60 aptamers and ZIKV NS1 protein detection consisted of DC measurements of the graphene transistors transfer characteristics. We conducted these measurements via electrolyte gating, utilizing a Keysight
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • dipole antennas located in the opening of a special bidirectional horn that forms the radiation pattern of the receiving system and also serves as a low-frequency filter. For radiation detection, many bolometer types can be applied. The detectors for this instrument should work at 300 mK, since this is
PDF
Album
Full Research Paper
Published 01 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • 250Xi) using a non-monochromatic Mg Kα source with an analysis spot smaller than 2 mm2. The detection system contains a double-focusing 180° spherical sector analyzer with a mean radius of 150 mm and an energy range of 0 to 5 keV. The pressure in the analysis chamber was ca. 5 × 10−10 Torr, and the
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • /bjnano.13.65 Abstract Organophosphate-based pesticides (e.g., parathion (PT)) have toxic effects on human health through their residues. Therefore, cost-effective and rapid detection strategies need to be developed to ensure the consuming food is free of any organophosphate-residue. This work proposed
  • stability (≈180 days), good reproducibility, and repeatability for interference-free detection of PT residues in actual samples. This electrochemical nanosensor is suitable for point-of-care detection of PT in a wide dynamic range of 3 × 10−11–11 × 10−6 M with a lower detection limit of 10.9 pM. The
  • performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples. Keywords: electrochemical nanosensor
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • -equilibrium Green’s functions formalism. The numerical results are compared with experimental data of ammonia and nitrogen dioxide detection. Multiple molecules of PANI in the form of emeraldine salt were studied with more than one absorbed molecule of ammonia or nitrogen dioxide. From the I–V characteristics
  • numerically modeled for several adsorbed gas concentrations, several gas configurations, and different PANI molecule positions, including carrier hopping between them. The results are comparable to the experiment and show good properties for the application as gas sensor device for NH3 detection and rather
  • good properties for NO2 detection. Keywords: ammonia; gas sensor; nitrogen dioxide; numerical computation; polyaniline; Introduction Polyaniline is a conducting polymer consisting of benzene rings connected by nitrogen units, which can be used in a wide spectrum of applications, for example, dyes for
PDF
Album
Full Research Paper
Published 26 Jul 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • . Indeed, there remains an issue that the modulation frequency has the constraint of a transfer function of cantilever dynamics and the bandwidth of the PLL. We believe that this issue will be solved by future work such as using a heterodyne detection scheme [65][66][67]. It is noted that AC-KPFM observes
  • it would be useful to operate AC-KPFM with a heterodyne detection scheme [65][66][67] in order to reduce a photothermal effect on the cantilever dynamics [68][69] and measure the fast SPV phenomena. The AC-KPFM method is utilized not only for SPV measurements, but also for direct measurements of
PDF
Album
Full Research Paper
Published 25 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • applications at least for the last two decades. The difficulty of this development is in the small energy scale: The energy of a photon of 10 GHz is just 7 yoctojoule (7 × 10−24 J). To realize the detection, the photon must trigger a process whose energy is of the order of this value (the difference between
  • the energy of a JJ by a certain value and may result in switching into the resistive state. Several frequency ranges of effective detection may exist [39] due to resonant activation, and the most efficient switching occurs at signal frequencies of 0.6 from ωp = (2eIc/ℏC)1/2 [40], which is fully
  • the sum of the products of the Poisson distributions that photons are contained in the signal and the switching probabilities q[i] due to absorption of i photons. The switching probability psw is the result of M switching attempts over time δt: where q[0] is the probability of the erroneous detection
PDF
Album
Full Research Paper
Published 04 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • single-molecule detection level [18][19]. The Raman enhancement originates from an electromagnetic mechanism, provided by the excitation of surface plasmons, and a chemical mechanism which is related to the modification of Raman polarizability of molecules [20]. It has been reported that 2D materials
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • molecules, which can then be used, for example, to detect metal ions in solution. Herein, we describe 13 nm GNPs functionalized by glutathione (GSH) and conjugated with a rhodamine 6G derivative (Rh6G2), which can be used to detect Hg(II) in cells. The detection of Hg2+ ions is based on an ion-catalyzed
  • capabilities of the GSH-modified GNPs, additional modification strategies are needed. In this study, rhodamine 6G derivative conjugated to GSH-modified GNPs (GNPs-GSH-Rh6G2) was designed and synthesized in order to effectively tune the properties of GSH-functionalized GNPs for the detection of Hg2+ and cell
  • concentration of electrolyte solution was increased. The GNPs-GSH-Rh6G2 have a lower fluorescence baseline in 0.10 M NaCl solution, which is important for the application in living organisms. Detection of Hg(II) We investigated the optical sensing properties of GNPs-GSH-Rh6G2 using fluorescence spectroscopy. To
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • mg/mL) at 25 and 37 °C using a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) at 633 nm and 173° detection angle. Size and size distribution were obtained from the correlation function using CONTIN analysis available in the Malvern software. The hydrodynamic diameters (DH) were
PDF
Album
Full Research Paper
Published 22 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • sodium carbonate solution. The extracts were analyzed using a high-performance liquid chromatograph coupled to a UV–vis spectrophotometric detector. For the detection of polyphenols, chrysin and p-coumaric acid (analytical standard) at a wavelength (λ) of 310 nm were used as markers. At least three
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • years due to important advantages that they offer, for example, good recyclability, long-term use, and cost effectiveness. For ultrasensitive detection of molecules, however, the SERS performance of standalone semiconductor substrates is too weak. Therefore, the development of hybrid nanomaterials based
  • HAuCl4 to controllably grow Au NPs on the ZnO nanorods and obtained effective substrates for the ultrasensitive detection of organic pollutants in water, which could be recycled multiple times [45]. Powdered ZnO–Au nanocomposites were synthesized via hydrothermal reactions, a simple, facile, and
  • the detection of molecules [56]. Raman scattering in molecules is strongly amplified when they are located in the vicinity of nanostructured substrates [57], allowing for the ultrasensitive detection of target analytes down to subfemtomolar levels of concentration [54][58]. Other advantages of SERS
PDF
Album
Review
Published 27 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • , Latvia Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga, LV-1063, Latvia 10.3762/bjnano.13.35 Abstract This article describes the synthesis of nanostructured copper oxide on copper wires and its application for the detection of hydrogen peroxide. Copper oxide petal
  • concentration of H2O2 in the range from 10 to 1800 μM was obtained. The sensitivity of the obtained CuO electrode is 439.19 μA·mM−1. The calculated limit of detection is 1.34 μM, assuming a signal-to-noise ratio of 3. The investigation of the system for sensitivity to interference showed that the most common
  • qualitative detection of H2O2 in real samples, as well as for the quantitative determination of its concentration. Keywords: copper oxide; electrochemical sensor; hydrogen peroxide; nanostructures; Introduction Hydrogen peroxide, a strong oxidant and an essential intermediate product in many biomedical
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • 1999/2, 182 21 Prague, Czech Republic 10.3762/bjnano.13.34 Abstract The selective detection of ammonia (NH3), nitrogen dioxide (NO2), carbon oxides (CO2 and CO), acetone ((CH3)2CO), and toluene (C6H5CH3) is investigated by means of a gas sensor array based on polyaniline nanocomposites. The array
  • oxides, and various volatile organic compounds, is crucial in automotive, defense, aviation, chemical, medicine, and food industries [1][2]. Research on chemical sensors is currently focused on the fabrication of multisensor arrays for enhanced detection and identification of various chemical compounds
  • combination for E-nose and gas sensor applications. The usage of a powerful classification system based on statistical analysis and machine learning algorithms is a prime need for sensing applications in different fields, such as gas detection and monitoring [22][23], food industry [24], and agriculture [25
PDF
Album
Full Research Paper
Published 27 Apr 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • for resonance detection of a GeSn alloy. Meija et al. [42] proposed the technique of using resonance aid to reduce the pull-in voltage of Ge0.91Sn0.09 NWs. By applying 610.8 kHz and 0.45 V AC voltage to a GeSn alloy nanowire, the pull-in voltage can be reduced from 13.8 to 5 V. This method can
  • electrostatic switches. In addition, Cui et al. [92][93][94][95] showed that the self-powered triboelectrification nanogenerator (TENG) can also be used for human health detection and wound healing. Piezoelectric power generation: Piezoelectric materials can produce very precise tiny motions and have
  • switch, thus reducing the need for external excitation. Ultrasonic transducers based on capacitive switch structures are widely used in medical imaging, underwater tests, and obstacle detection. Saadatmand and Kook [97] conducted a theoretical analysis on electrostatically driven ultrasonic transducers
PDF
Album
Review
Published 12 Apr 2022

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • operating point near the critical current (dashed line) is selected for broadband detection. The response is determined by the voltage, which increases with increasing power until it reaches the voltage at the Shapiro step. For this regime, the use of serial JJs can be beneficial since the total voltage
  • is also used as a definition, that is, PS is the level of input radiation power, at which the detector responsivity decreases by a factor of two. P0 is the bottom limit determined by the noise equivalent power and the frequency band ΔF of the detection system, . For a single junction the upper limit
  • of JJs in the broadband detection regime was developed and applied. At the first stage, electromagnetic modeling of several geometries of antennas was carried out for effective receiving in the frequency range of 50–800 GHz. The electromagnetic properties of the systems were investigated, namely the
PDF
Album
Full Research Paper
Published 28 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • not reduced. Subsequently, the SEM images were analyzed and processed by using the Matlab edge detection algorithm, and the IMOVERLAY script in Matlab File Exchange was used for pixel analysis. Thus, the percentage of the substrate area without metal nanoparticles was calculated by the percentage of
PDF
Album
Full Research Paper
Published 15 Mar 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • large amount of corrosion products released into the solution, suggesting a serious corrosion. This degradation impedes AFM friction experiments that are based on optical detection through the solution. After immersion for the same time in phosphate buffer and NaCl solution, the friction coefficients of
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • and measure human body pressure. These sensors were beneficial for pressure sore prevention, rehabilitation, and the detection of movement during activities. Further, these sensors were comfortable and bendable and were applied onto the upper portion of an arm to detect the deflection of the forearm
PDF
Album
Full Research Paper
Published 07 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • to 12 eV leads to the loss of up to four CO ligands, but neither the molecular parent anion nor the bare metal anion are observed within the detection limit of our experimental set up. The dominant DEA channel is the formation of the anionic fragment [Mo(CO)5]− through a low-energy contribution close
PDF
Album
Full Research Paper
Published 04 Feb 2022
Other Beilstein-Institut Open Science Activities