Search results

Search for "electric field" in Full Text gives 384 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell

  • Denys M. Natarov,
  • Trevor M. Benson and
  • Alexander I. Nosich

Beilstein J. Nanotechnol. 2019, 10, 294–304, doi:10.3762/bjnano.10.28

Graphical Abstract
  • has the radius a. This configuration of the active region is selected as the most favorable for achieving lower thresholds of the LSP modes. Such anticipation is based on the finding of [17] (see Equation 36 there): low threshold needs good overlap of the active region with the electric field of mode
  • expressed as and Vmin is the volume of open resonator, that is the inner domain of the minimum circle containing all of the resonator elements [17]. If the mode electric field is normalized by its maximum magnitude value, then WN coincides with the effective mode volume – this quantity is an important
  • also a sum of two partial values, so it is convenient to introduce the overlap coefficients between each part of the active region and the mode electric field, Then the “gain = loss” Equation 6 takes the following form: Equation 13 is, of course, simply a re-written optical theorem and hence it is
PDF
Album
Full Research Paper
Published 28 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • presence of the electric field was discussed. Keywords: graphene oxide; liquid crystal; nematic phase; switching; threshold voltage; Introduction Liquid crystals (LCs) are classified as a type of soft matter which are characterized by anisotropic molecules and a liquid-like fluidity behavior. Of all LC
  • electric field can change the director orientation thereby causing a change in the optical properties. In the absence of an electric field, the orientation of n is determined by anchoring conditions. The field-induced reorientation of the LC director is known as the Frédericksz effect [3]. In the
  • Frédericksz effect, the deformation of a homogeneous layer of a NLC is caused by the electric field E, which is initially perpendicular to the director. Such structural transition appears at a certain magnitude called the threshold voltage, Uth. When the applied voltage, U, is lower than the threshold U < Uth
PDF
Album
Full Research Paper
Published 07 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • function of wavelength and (b) wavelength and photoluminescence of GNRs under polarized light. The inset images inserted are the FDTD simulation of the electric field intensity distribution (indicated by the color bar) of the gold nanorods. (a) TEM image of a GNR; (b) TEM image of GNR@CdSe/ZnS; (c) energy
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • that scatters the electric field, and the long range nature of the electrostatic forces that complicate the identification of the actual probed region. Therefore, the objectives of this study were to determine whether EFM can identify an interface region, and most importantly, to identify the
  • simulations matched the experimental data (see Table 2). The relatively small difference between PS + 50 nm Al2O3 + 50 nm SiO2 and PS + 100 nm SiO2 signals can be explained by the thickness of the upper layer (50 nm) that limits the electric field penetration, and consequently, the effect of the subsurface
  • profiles, b) average EFM signal profiles (lower panel) and the corresponding EFM images (upper panels). Typical simulation of the electric field map obtained with a 2D axisymmetric model of the EFM tip and the PS + Al2O3 sample as a substrate. Experimental data and simulations for a typical reference
PDF
Album
Full Research Paper
Published 07 Dec 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • of the much lighter and less damaging 4He+ ion. ALIS is a highly developed version of the gas field ion source (GFIS), the operation of which is shown schematically in Figure 1 [23][24]. The non-uniform high electric field at the atomically sharp tip of a tungsten needle maintained at cryogenic
  • applied between sample and tip. Due to the tip shape the electric field is enhanced up to 25-times near the tip [127] and electrons are consequently emitted [128][129][130]. In Figure 14a, the electric field between tip and sample is shown for a representative tip shape and tip–sample distance. The
  • physical process of emission is quantum mechanical tunneling of the electrons through the potential barrier, which is tilted due to the electric field (see Figure 14b for a schematic description of the tunneling process). The theory of electron field emission from metals was developed by Ralph H. Fowler
PDF
Album
Review
Published 14 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • radio frequency field using a frequency of 13.56 MHz. The setup consists simply of two parallel plates about 10 cm apart where the substrate is placed on the bottom electrode. These electrodes are connected to radio frequency generator generating the alternating electric field at 13.56 MHz frequency
  • (Scheme S1, Supporting Information File 1). At this frequency, electrons quickly respond to any minor changes in the electric field thus gaining a significant amount of energy. When these highly energetic electrons collide with the feed gas atoms or molecules this results into a series of successive
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Contactless photomagnetoelectric investigations of 2D semiconductors

  • Marian Nowak,
  • Marcin Jesionek,
  • Barbara Solecka,
  • Piotr Szperlich,
  • Piotr Duka and
  • Anna Starczewska

Beilstein J. Nanotechnol. 2018, 9, 2741–2749, doi:10.3762/bjnano.9.256

Graphical Abstract
  • concentration (μe = 1256(25) cm2V−1s−1 and ne = 4.65(6)·1016 m−2 determined using Van der Pauw method). It should be underlined that one of the most important properties of graphene [33][34][35] and other 2D materials [2][36][37][38][39][40][41] is the strong electric field effect which leads to
  • weak magnetic field), one can find . Therefore, the left axis in Figure 6c presents the square root of the measured PME response (shown in Figure 6b) scaled as the μτ. The data are presented as a function of intensity of electric field (bottom axis) and concentration of electrostatically induced
  • observed PME response in non-suspended graphene. It agrees with theoretical predictions [43] based on the influence of charged impurities scatterers on transport of carriers in graphene. Figure 6d shows the difference between electron and hole mobilities as a function of electric field (bottom axis) and
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • nanostructures corresponds to the limited far-field second harmonic radiation despite the huge fundamental electric field enhancement in the interstice between two plasmonic nanoparticles forming a nanodimer. In this article, we report a comprehensive investigation of this effect using a surface integral
  • concentrate light into subwavelength regions [1][2]. The collective oscillations of these electrons in a given plasmonic nanostructure are called localized surface plasmon resonances (LSPRs) [3][4][5]. The high electric field enhancement associated with the optical excitation of such a resonance has been
  • –Glisson (RWG) basis functions. The expansion coefficients are found by applying the method of moments with Galerkin’s testing [23][24]. A Poggio–Miller–Chang–Harrington–Wu–Tsai formulation is used to ensure accurate solutions even at resonant conditions [23][24]. The SH electric field is then deduced from
PDF
Album
Full Research Paper
Published 15 Oct 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • materials may vary and eventually be tuned by an electric field, for instance, in the case of buckled silicene and germanene [31]. There is much less information on the dielectric screening of 2D materials, which also depends on the substrate and environment. It has been calculated only for a few cases (for
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Silicene, germanene and other group IV 2D materials

  • Patrick Vogt

Beilstein J. Nanotechnol. 2018, 9, 2665–2667, doi:10.3762/bjnano.9.248

Graphical Abstract
  • 2D layer properties, for example, via chemical functionalization or external fields. This could be efficiently utilized in a transistor, where the electronic band gap can then be tuned by the electric field applied perpendicular to the lattice plane. As an example, ab initio calculations have shown
  • that the two sub-lattices in silicene, resulting from the buckling, are moved further apart by an orthogonal electric field, which leads to a band gap opening [7][8]. Another important advantage of these new materials is the significant spin–orbit interaction, which also increases with increasing
PDF
Album
Editorial
Published 10 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • increase of the value volumetrically averaged over the antenna height within the array unit cell. When increasing LH, such augmentation is to be manifested up to some limit below which the electric field becomes too small and incapable of compensating the unit cell size decrease. This effect is
  • illustrated in Figure 3 where the optimized nanoantenna length L and the averaged electric field intensity are plotted as a function of the cross-arm length LH for the example of H-shaped nanoantennas with the LSPR energy fixed at 190 cm−1. Optimization was carried out in the ANSYS EM Suite software
  • ; details of the electric field averaging procedure are described in [23]. When choosing the transverse spacing between nanoantennas Gy we exploited the condition of superposing the LSPR wavelength λLSPR and the 1st diffraction harmonics excited in a Si wafer to maximize the E-field enhancement [23]: λLSPR
PDF
Album
Full Research Paper
Published 05 Oct 2018

Nanostructured liquid crystal systems and applications

  • Alexei R. Khokhlov and
  • Alexander V. Emelyanenko

Beilstein J. Nanotechnol. 2018, 9, 2644–2645, doi:10.3762/bjnano.9.245

Graphical Abstract
  • years, no practical interest in liquid crystals was found. Much later, in 1927, the effect of the orientation of liquid crystals by an electric field was discovered by Russian physicist Vsevolod Fréedericksz [4][5][6]. Today, the operation of the liquid crystal display (LCD) is based on this effect
PDF
Editorial
Published 05 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • importantly, it has been recognized that several parameters of the anodization, such as electric field strength, water content in the electrolyte, concentration of fluorine ions and pH value, have a direct influence on the electronic properties of the TNTs [20]. Nevertheless, the modification procedures for
  • observe the onset potential, Eonset. The latter is a specific energy condition where the photogenerated electrons are effectively separated due to the electric field at the semiconductor/electrolyte interface and where jph becomes observable. The importance of Eonset in these experiments relies on the
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018
Graphical Abstract
  • . Simultaneously, the electron–hole pairs are photoexcited from EV, which leads to the neutralization between the ionized VO+/VO2+ and the generated electrons, contributing to free holes in EV [18]. During the NBIS duration with VGS = −30 V, a vertical electric field is exerted along the growth direction of the
  • trapped holes at the front-channel interface. After the forward measurement with VGS = −10–20 V, the ionized VO+/VO2+ would be gradually neutralized by capturing electrons, and the trapped holes at the front-channel interface are completely de-trapped due to the vertical electric field induced by the
  • electrons are photoexcited to EC, they are partly accumulated and trapped at the back-channel interface due to the weaker vertical electric field. As a result, the excited hole in EV and the ionized VO+/VO2+ near EF at VGS of the turn-on voltage would be neutralized by the free electrons. Therefore, after
PDF
Album
Full Research Paper
Published 26 Sep 2018

Directional light beams by design from electrically driven elliptical slit antennas

  • Shuiyan Cao,
  • Eric Le Moal,
  • Quanbo Jiang,
  • Aurélien Drezet,
  • Serge Huant,
  • Jean-Paul Hugonin,
  • Gérald Dujardin and
  • Elizabeth Boer-Duchemin

Beilstein J. Nanotechnol. 2018, 9, 2361–2371, doi:10.3762/bjnano.9.221

Graphical Abstract
  • modulus of the total electric field and its x- and y-components in the slit, i.e., in the (xy) plane, using the method described in [47][48]. Figure 9 shows the results for structures 1 (circular slit) and 7 (elliptical slit with a/b = 2, see Table 1). When SPPs are isotropically excited in the center of
  • a planar surface, the phase of the electric field of an incident light beam in (a,c) orthogonal or (b,d) oblique incidence is spatially (a,c) independent or (b,d) dependent, respectively. If this spatial phase distribution is reproduced on a planar surface, an extended planar light source can emit a
  • in the slit. (a–f) Spatial distribution of the square modulus of the total electric field |E|2 = |Ex|2 + |Ey|2 + |Ez|2 and of its components |Ex|2 and |Ey|2 along the x- and y-axes, as calculated inside the slit of structures 1 (circular) and 7 (elliptical, see Table 1). The excitation is modeled as
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

Pinning of a ferroelectric Bloch wall at a paraelectric layer

  • Vilgelmina Stepkova and
  • Jiří Hlinka

Beilstein J. Nanotechnol. 2018, 9, 2356–2360, doi:10.3762/bjnano.9.220

Graphical Abstract
  • paraelectric layer with a thickness comparable to the thickness of the domain wall itself can act as an efficient pinning layer. At the same time, such a layer facilitates the possibility to switch domain wall helicity by an external electric field or even to completely change the characteristic structure of a
  • layer could be easily switched with a 0.5 kV/mm electric field, as is apparent from the quasistatic hysteresis loop shown in Figure 8 (see below). In fact, the thickness of the SrTiO3 layer can be tuned in a way that the wall passing through there is effectively in the state just below the phase
  • quasistatically, from a sequence of configurations relaxed under fixed bias electric fields, similarly as in [12]. The initial state had two domain walls with opposite Pt values, as in Figure 3, then the electric field was gradually increased, decreased and increased again to form a whole polarization cycle. In
PDF
Album
Full Research Paper
Published 31 Aug 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • dielectric materials the electric field penetrates deeply into the volume [16], the exploitation of large bulk nonlinearities also enables enhanced nonlinear light–matter interactions at the nanoscale. Third-harmonic generation (THG) was the first nonlinear effect observed in nanoscale semiconductors with
  • . At the fundamental wavelength the plasmonic ring produces a strong electric field at its center. This allows for an improved coupling to the toroidal dipole moment inside the disk, therefore providing a more efficient excitation of the anapole mode (i.e., ED and TD moments of equal magnitude and in
  • the electric field, E0, polarized along the y-axis with respect to the reference system of Figure 2a. For the dispersion of the refractive index of Al0.18Ga0.82As we used the analytical model proposed in [39]. In Figure 2b,c both the electric and magnetic field enhancements are depicted, respectively
PDF
Album
Full Research Paper
Published 27 Aug 2018

Optimization of the optical coupling in nanowire-based integrated photonic platforms by FDTD simulation

  • Nan Guan,
  • Andrey Babichev,
  • Martin Foldyna,
  • Dmitry Denisov,
  • François H. Julien and
  • Maria Tchernycheva

Beilstein J. Nanotechnol. 2018, 9, 2248–2254, doi:10.3762/bjnano.9.209

Graphical Abstract
  • with the same vertical profile and a various number of lobes in the lateral direction are present). The simulated electric field distributions in the horizontal and vertical cross-sections in the middle of the waveguide are shown in Figure 2. The LED-waveguide coupling yield, which is defined as the
  • coupling, which increases from 55% to 77.1%. The electric field distribution in the vertical cross-section in the middle of the waveguide is shown in Figure 2e. We note that this change of the architecture is feasible for the platform fabrication: the spin-on-glass supporting layer can be removed by dry
  • -component (i.e., pointing along the waveguide from the LED to the detector) of the Poynting vector was analyzed. The distribution of the Poynting vector in the different horizontal layers inside the system and the electric field distribution in the vertical cross-sectional layer in the middle of the
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
PDF
Album
Review
Published 21 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • electric field enhancement is observed for red-shifted excitation wavelengths. Fabrication strategies of optical antennas, and in particular gap antennas with an optical response in the visible to NIR regime, are versatile and are often correlated with the final application schemes. Although top-down
PDF
Album
Full Research Paper
Published 17 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • may alter the final deposition profile from the simulated one by prohibiting the deposition at other parts of the nanostructrure. As mentioned earlier, an external electric field is applied to the samples for more efficient extraction of the photogenerated charges. This electric field is not taken
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • effects of molecular dipolar charges on friction were investigated in a model [121], predicting a friction peak when a suitable resonance condition is reached as a function of an applied electric field. Different anions play a complex role depending on the surface potential, and related to the steric
  • to the single-particle limit. Inspired by earlier theoretical suggestions [151][152][153][154], a laser-cooled Coulomb crystal of ions, set into motion across a periodic optical lattice under the action of an external electric field, demonstrates the feasibility to control friction. By changing the
PDF
Album
Review
Published 16 Jul 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • carriers, accelerated by the electric field present at the junction, and colliding with the boundary of the gap [18]. The detected spectrum is thus the visible tail of a thermal peak located in the infrared. The position of peak is not directly related to the bias via the quantum relation cited above, but
  • mode supported by the TiO2 waveguides by a two-dimensional finite element calculation (Comsol software) using published values of the refractive index of TiO2[63]. The insets of Figure 6a and Figure 6c display cross-sectional views of the norm of the electric field existing in the waveguides at a
  • source is likely to be higher. We also estimated the propagation length of the slot mode using finite-element simulations. A cross-sectional view of the norm of the electric field is shown in the inset of Figure 7 for a mode existing at 800 nm. The field is mostly located in the slot and the calculated
PDF
Album
Full Research Paper
Published 11 Jul 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • University of Science and Technology, Wuhan 430074, China 10.3762/bjnano.9.183 Abstract In piezoelectric semiconductors, electric fields drive carriers into motion/redistribution, and in turn the carrier motion/redistribution has an opposite effect on the electric field itself. Thus, carrier drift in a
  • ]. The two in-plane electric field components, E1 and E2, can be proven only to depend on x1 and x2, while the out-of-plane component E3 is zero. The electric displacements, D = (D1, D2, D3)T, in the ZNW are: with where are the compliance coefficients with cKL being the elastic constants; εij being the
  • electric current expression, Ji = qnμijEj + qκijn,j, is essentially nonlinear. Since a ZNW with the crystallographic c-axis along the x3-direction is transversely isotropic, the electron mobility μij and the diffusion coefficients κij can be written as The two in-plane components of the electric field can
PDF
Album
Full Research Paper
Published 04 Jul 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • ). The kinetic energy of the particles is governed by two terms, the pressure difference between the two chambers and the energy gained because of the applied electric field. Thus, the energy per atom equals E/N = E0/N + eVs/N. The term E0/N corresponds to the initial energy per atom due the pressure
  • difference and is about 0.1 eV/atom for NPs produced by IGC [40] and eVs/N is the energy per atom gained by the electric field. Considering that the NP are approximately spherical, the number of atoms N composing a NP can be estimated by the following relation [54]: N = (RN/RWS)3 ≈ 17295 atoms/NP, where RN
  • accelerated by the electric field towards the substrate and the energy of landing can be controlled by the voltage applied on the substrate (Vs). Thus the charged nanoparticles can either soft-land on the substrate (Vs = 0 kV) or collide with a high energy (Vsub ≠ 0 kV). Depending on the impact energy
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018
Other Beilstein-Institut Open Science Activities