Search results

Search for "mobility" in Full Text gives 453 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • gate dielectric, which is a crucial requirement for the performance of the OFETs and for the device reliability. Charge-carrier mobility is improved in the presence of this polymer [17]. PPXC is also an appropriate hydroxyl-free gate dielectric and prevents trapping of electrons at the semiconductor
  • polymers as gate dielectrics presents several advantages for the improvement of the electronic device properties such as higher dielectric constant [35] and dielectric strength [36], reduced threshold voltage [37], increased charge mobility and reduced leakage current [38]. Compared to pure parylene C and
  • reduced with higher Ag content, which is in line with our argument that adding nanoparticles effectively reduces the mobility of polymer chains. Comparing samples E and F (Figure 7b), they present a similar Δε, but the former has a lower amount of silver-oxide nanoparticles with a larger average size
PDF
Album
Full Research Paper
Published 12 Feb 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • applied in standard lithography processes and that, inevitably, modify the electrical proprieties of graphene. By Raman spectroscopy and electrical-transport investigations, we correlate the room-temperature carrier mobility of graphene devices with the size of well-ordered domains in graphene. In
  • properties are deteriorated as compared with devices fabricated by conventional production methods. Keywords: CVD graphene; defects; mobility; well-ordered domain; Introduction The unique properties of graphene, such as high conductivity, high carrier mobility at room temperature, high sensitivity of the
  • performed Raman spectroscopy and electrical transport measurements, at room temperature, to correlate the size of well-ordered domains in graphene with its carrier mobility. The Raman spectroscopy was performed using an InVia Renishaw Raman spectrometer with a 514.5 nm laser and the electrical transport
PDF
Album
Full Research Paper
Published 05 Feb 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • conversion efficiency of all solar absorber materials because decreasing the amount of grain boundaries likely increases charge carrier mobility [26]. The crystallite sizes of as-deposited and thermally treated Sb2S3 layers are presented in Table 2. The effect of the deposition temperature is observed in Sb
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • examination of varying growth conditions. For the PVD process, the variation of temperature and deposition rate provided the insight that island distance and size increase with increasing substrate temperature. This can be intuitively understood by the higher mobility of the indium atoms diffusing on the
  • deposition conditions, such that a significant wetting layer formed in addition to gallium islands. Due to the different temperature dependence of surface mobility and adsorption–desorption equilibria, a sequential PVD process turned out necessary for the growth of (In,Ga) islands, whereby indium islands
PDF
Album
Review
Published 12 Dec 2018

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • by solute hydrogen atoms and thus an enhancement of dislocation mobility. The appearance of these converse phenomena strongly depends on the grain size. In small grains hydrogen-enhanced localised plasticity is dominant, while in coarse grains hydrogen embrittlement is the prevalent mechanism [55
PDF
Album
Full Research Paper
Published 10 Dec 2018

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • ]. It is commonly agreed that the surface interaction of the nanoinclusions with the host polymer acts to rearrange the polymer chains and reduces their mobility at the interface [12][13][14]. The mobility reduction can lead to a decrease of the permittivity of the polar polymer, and consequently, also
PDF
Album
Full Research Paper
Published 07 Dec 2018

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • nanoelectronics, as it provides unprecedented mobility of charge carriers at room temperature [1]. Moreover, very high conductivity at room temperature and a half-integer quantum Hall effect suggest the presence of relativistic charge carriers with vanishing mass [2]. Graphene has been investigated by using
PDF
Album
Full Research Paper
Published 28 Nov 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • , materials comprising all three components can be expected to show improved properties. Since its discovery in 2004, graphene has been proposed for a wide range of applications due to its supreme values of specific surface area, electronic mobility, thermal and electrical conductivities and elastic modulus
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • ], graphene has been widely used in various fields such as photocatalysts, lithium battery electrodes, supercapacitors, gas sensors and electronic devices [2][3][4] due to its high specific surface area (2630 m2/g) and high carrier mobility at room temperature [5]. The electrical properties of graphene are
  • increases the resistance of the sensor. The sensing performances of MOS sensors are heavily affected by the working temperature, because the working temperature influences the kinetics, conductivity and electron mobility of MOS [30][31]. Since sufficient thermal energy is required to overcome the potential
  • barrier and achieve the required electron mobility, the operating temperature of MOS sensors is above 200 °C in general. The excessive operating temperature leads to high power consumption and difficulty of integration, which is contrary to our concept of energy conservation and emission reduction
PDF
Album
Review
Published 09 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • silver atoms through the impact of high energy ions and electrons on the silver surface during plasma treatment. This leads to an increased mobility of the silver atoms, which either rearrange on the surface by displacement or are completely removed through sputtering. A comparison of the cross-sectional
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • means that the electrochemical process is confined at the surface, not determined by diffusion of ferrocene into the solution. So the mobility of ferrocene is just sufficient for efficient mediation of the electron flow from the flavin mononuclotide cofactor to the electrode surface. The fact that the
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Contactless photomagnetoelectric investigations of 2D semiconductors

  • Marian Nowak,
  • Marcin Jesionek,
  • Barbara Solecka,
  • Piotr Szperlich,
  • Piotr Duka and
  • Anna Starczewska

Beilstein J. Nanotechnol. 2018, 9, 2741–2749, doi:10.3762/bjnano.9.256

Graphical Abstract
  • ) materials in electronic devices require the development of appropriate measuring methods for determining their typical semiconductor parameters, i.e., mobility and carrier lifetime. Among these methods, contactless techniques and mobility extraction methods based on field-effect measurements are of great
  • carrier mobility on the concentration of electrons and holes induced by a back-gate voltage. Conclusion: The presented contactless PME method, used in Corbino geometry, is complementary to the mobility extraction methods based on field-effect measurements. It can be used for determining the mobility and
  • diffusion length of carriers in different 2D materials. Keywords: carrier mobility; contactless investigations; graphene; photomagnetoelectric effect; 2D materials; Introduction The application of two-dimensional (2D) materials in electronic devices [1][2][3][4][5][6] requires the development of
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • more dense grains as compared with the films deposited at higher pressure and lower power. This results in less grain boundaries and consequently higher carrier mobility and conductivity. The SEM images also show more uniform surfaces over the film area for the samples deposited at 3 mTorr compared
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • = 0.5 h, the transients revealed that in fact Eonset starts below 0.05 V/RHE, while for longer ta, Eonset shifts to higher values (Figure S1d, Supporting Information File 1). This observation has been associated with electron mobility and charge separation kinetics [63]. As the electrode is illuminated
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018
Graphical Abstract
  • to their outstanding properties such as high electron mobility, good transparency to visible light, and low process temperature with good uniformity [1][2][3][4]. Among the numerous AOS materials, indium gallium zinc oxide (IGZO) is one of the most promising candidates used as the active layer
  • works have highlighted that the electrical properties of the device (for both the initial and after stress conditions) such as threshold voltage, on/off ratio, and field effect mobility, can be effectively adjusted by controlling the active layer thickness [19][20][21][22][23]. Up to now, the impact of
  • thicknesses were prepared by magnetron sputtering. The initial electrical properties and the photoleakage current of a-IGZO TFTs with various active layer thicknesses were investigated. The subthreshold value slightly increased while the threshold voltage (Vth) and mobility (μ) decreased with increasing TIGZO
PDF
Album
Full Research Paper
Published 26 Sep 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • second fraction (5% CH3CN). The mobility of the product in TLC (Rf ≈ 0.5) differed from that of hydrolyzed FITC (Rf ≈ 0.65). The concentration of Si–NH-Flu (33 µM) was evaluated spectrophotometrically using the molar absorption coefficient for fluorescein (ε495 = 74000 cm−1·M−1). For fluorescence
PDF
Album
Full Research Paper
Published 21 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • . This is in good agreement with the high mobility values of charge carriers. Based on our data we conclude that the magnetic and magnetotransport properties of the films at room temperature are defined by the MnSb inclusions. Keywords: anomalous Hall effect; high-temperature ferromagnetism
  • granular systems are the higher values of carrier mobility, about one order of magnitude higher than that in traditional DMS such as Ga1−xMnxAs. This is due to the aggregation of the majority of magnetic impurity atoms within nanoinclusions, which results in a higher crystalline quality of the
  • is a GaSb matrix with incorporated MnSb nanograins [8][9][10][14]. However, the best results were obtained not for a composite system but for (GaSb)1−x(MnSb)x alloys with x = 0.41. In annealed samples the mobility of holes was about 100 cm2/(V·s) and Tc was above room temperature [11][12]. Earlier it
PDF
Album
Full Research Paper
Published 14 Sep 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • in such applications include CuxO [19][29], CdS [30], TiO2 [31], Fe2O3 [32], and BiVO4 [33][34]. To absorb light with Co3O4, an adequately thick film is required. However, the low mobility of photogenerated charge carriers in Co3O4 can result in a low carrier lifetime, which is detrimental for
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • [13][14]. This concept eliminates doping altogether, leading to a lower inelastic carrier scattering rate and higher carrier mobility which allow for decreased heat loss and bias voltages in ULSI. Such properties enable Si-FET technology to work at even smaller structure sizes, potentially enabling
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • -charged cations, such as Sn2+, Mn2+, or Ge2+, where the tin-based materials have gained the most attention and progress [10][16][18][29][30][38][44][54][59][60][61][62][63][64][65]. The Sn-based HPs (CsSnX3, MASnX3) show a high charge carrier mobility and diffusion length, comparable to the Pb-based
  • luminescent Cs3Bi2X9 NCs [159]. A study of single-crystal and polycrystalline MABI showed that both materials have a long exciton lifetime and a high carrier mobility [161][163]. A transient absorption study of MABI crystals showed only a minor change of the exciton dynamics when the crystal size was reduced
PDF
Album
Review
Published 21 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • . Utilizing the capabilities of an AFM to manipulate such structures with sub-nanometer precision in space enables to add a smaller 40 nm AuNP to the larger one. Even though, shorter linker thiol molecules could be used instead, in principle, the high mobility of these linker molecules on the AuNP surface
PDF
Album
Full Research Paper
Published 17 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • wet-chemistry functionalization due to the precise dimensions needed for analysis. The Hall measurement system applies current and magnetic field and measures voltages and resistances. It then infers mobility and carrier properties from these measurements. The sheet resistivity (ρs) is directly
  • directly measured and RHS = ρs·µH, we can now infer the Hall mobility, µH. The sheet carrier concentration (ns) is obtained from RHS = hf/ns·e, where e is the electron charge. In dc mode, the carrier type is determined by the sign of the Hall voltage (negative = n-type, positive = p-type). In ac mode, the
  • positive outcome. As a result of the increased carrier concentration the mobility drops, which is expected for silicon [15]. Dopant trapping MLD is a surface-diffusion technique in which the dopant source is applied to the substrate surface and requires further thermal treatment to promote diffusion into
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • , its high hole mobility and its donor-like electronic properties [15]. Upon light absorption by the polymer, excitons are generated and they can be dissociated at the interface with TiO2, the polymer also acting as the hole-transporting layer. In this work, we investigated nanostructured TiO2 layers
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • characterization of ultrathin films with minimal sample preparation. Here, we study in detail how the analysis of raw measurement data affects the accuracy of extracted key sample parameters, i.e., how the standard deviation on sheet resistance, carrier mobility and Hall sheet carrier density is affected by the
  • mobility. Keywords: four-point probes; Hall effect; metrology; mobility; variable Probe Pitch; Introduction Materials characterization becomes increasingly difficult as the dimensions of transistors continue to decrease. Although three dimensional electrical characterization is the ultimate goal of
  • concentration, mobility and type of charge carriers [2][3]. Some of the measurement methods require significant sample preparation while other methods are destructive [2]. Great progress in measurement simplicity and accuracy has been achieved with the introduction of the micro-Hall effect (MHE) method [4]. The
PDF
Album
Full Research Paper
Published 20 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
PDF
Album
Review
Published 16 Jul 2018
Other Beilstein-Institut Open Science Activities