Search results

Search for "vibration" in Full Text gives 330 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • resonances of the chip, chip holder, or dither piezo [1] along with modes of fluid vibration when working in liquids [2]. The problem is accentuated at high frequencies when operating in high-viscosity liquids. A user can easily select the wrong peak resulting in increased tip–sample interaction forces or
PDF
Album
Full Research Paper
Published 08 May 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • be involved in interaction with BB in the mixture, we focused our attention on the IR band related to the stretching of the C≡N bond. Comparison of the spectra of pure compounds and 73 mol % BB mixture at room temperature reveals that shift of C≡N stretching vibration is negligible (Figure 7). The
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • the same IV–V group combination, we focus our study on two-dimensional SiAs2 and GeAs2 and compare them with their bulk counter parts with regard to electronic band structure, phonon-vibration frequencies, optical properties, band gap modulation behavior and predict their potential applications
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Automated image segmentation-assisted flattening of atomic force microscopy images

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li and
  • Huimin Wang

Beilstein J. Nanotechnol. 2018, 9, 975–985, doi:10.3762/bjnano.9.91

Graphical Abstract
  • exhibited in AFM images. Additionally, some other factors, such as hysteresis (Figure 1c), creep (Figure 1d), and nonlinearity (Figure 1e) of x–y and z-scanners and vibration from the environment can also cause distortion and artifacts in AFM images [20][22][23][24]. AFM images generally display a tilting
PDF
Album
Full Research Paper
Published 26 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • : where h is Plank’s constant, ν is the frequency of vibration, α is the adsorption coefficient, Eg is the optical band gap and A is a proportionality constant [51][52]. The value of the constant n denotes the characteristics in the transition of a semiconductor. For the case that both ZnO and BiOI
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

  • Fuat Topuz and
  • Tamer Uyar

Beilstein J. Nanotechnol. 2018, 9, 693–703, doi:10.3762/bjnano.9.64

Graphical Abstract
  • –H stretching of CTAC molecules, while the peak at 460 cm−1 is assigned to the asymmetric vibration of Si–O–Si. The Si–OH bond vibration can be seen at 802 cm−1. The presence of CD moieties is confirmed by the peaks at 1030, 1080 and 1155 cm−1 for the stretching vibration of C–C and C–O bonds and the
  • asymmetric stretching of C–O–C [30]. But, these peaks are overlapped by a broad stretching vibration peak of Si–O–Si at 1100 cm−1. Comparable FTIR spectra were observed for the CD-functionalized silica particles, suggesting a physical adsorption of CDs at the particle surface [21]. Thermogravimetric analysis
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • same as in our previous studies [29][37][41][44][45][46][47][48]. To perform stable atomic resolution imaging in this chamber, a mechanism to fix the unit by double spring vibration isolation and eddy current damping [49] is provided, to prevent vibration noise. Therefore, it is possible to obtain
  • atomic resolution images with the same performance as in our previous study [48]. We are able to perform NC-AFM measurements without the influence of vibration noise caused by the linkage to the PLD chamber. An optical interferometer [50] was used for deflection detection of the probe used for the NC-AFM
PDF
Album
Full Research Paper
Published 21 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • –C units. The peaks at 1398 cm−1, 1540 cm−1 and 1636 cm−1 correspond to the stretching vibration of aromatic C–N bonds [16][34]. The broad peak from 3000–3600 cm−1 can be assigned to the terminal NH or NH2 groups of the aromatic rings and O–H stretching of surface hydroxyl groups [20]. The FTIR
  • spectrum of CT nanoflakes shows three distinct peaks at 435 cm−1, 540 cm−1 and 1420 cm−1 corresponding to the stretching vibrations of Ti–O, bridging stretching modes of Ti–O–Ti and bending vibration of CO32− ions which is consistent with the literature [43]. The FTIR spectrum of the CTCN heterojunction
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • of hydroxy groups), 2893 cm−1 (C–H stretching), 1640 cm−1 (H–O–H bending of the absorbed water), 1431 cm−1 (–CH2 bending), 1369 cm−1 (O–H bending) and 1029 cm−1 (C–O–C stretching vibrations) [27]. In Figure 3b, pure PVA showed peaks at 3280 cm−1 (O–H stretching vibration of hydroxy group), 2914 cm−1
  • (saturated CH2/CH3 groups, stretching vibration), 1714 cm−1 (C=O stretching), 1425 cm−1 (CH stretching) and 1083 cm−1 (C–O–C stretching vibrations) [28]. In Figure 3c, the characteristic peaks of GO, which are located at 1714 cm−1, 1586 cm−1 and 1031 cm−1, are due to C=O in carboxylic acid and carbonyl
  • previous studies [19][29], which is in agreement with the SEM results. FTIR can only be used to detect signals from molecules with infrared activity. Therefore, Raman spectroscopy analysis was studied to detect the stretching vibration characteristic peak of homonuclear diatomic pairs. The Raman spectrum
PDF
Album
Full Research Paper
Published 12 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • in the region of 1650–1550 cm−1 (red lines) represent the stretching vibration and deformation vibration of surface-adsorbed hydroxy groups. The peak centred at 2350 cm−1 is characteristic for anti-symmetrical stretching mode of dissolved carbon dioxide [32]. The stretching band in the region of 590
PDF
Album
Full Research Paper
Published 05 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • –H stretch, respectively. The presence of N–H stretching vibration modes is due to some uncondensed amine functional groups in the carbon nitride layer [51]. The band in the range of 1230–1650 cm−1 corresponded to the stretching of sp3 C–N and sp2 C=N in CN heterocycles that exists within the g-C3N4
  • File 1), the CDs show the obvious absorption peaks at 2925 cm−1, 1608 cm−1 and 670 cm−1 which are correlated to the stretching vibrations of C–H, stretching vibrations of C=O, and bending vibration of =C–H, respectively. The three obvious absorption peaks at 2368 cm−1, 1409 cm−1 and 1095 cm−1 are
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • 500–850 cm−1 were attributed to Mo–O–Mo, indicating the occurrence of crystallization [28]. Both the Raman spectra and XRD results suggested that MoO2–CNFs were formed through a subsequent annealing process. The broad band at 3400 cm−1 was attributed to the O–H stretching vibration due to absorbed H2O
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • band intensities compared to the Au-free samples. As a result, the Raman spectra of TPS_Aux and TS_Aux can be analyzed in detail. The Raman spectra obtained for “bulk” anatase typically show O–Ti–O vibration bands at 144, 197, and 640 cm−1 from the Eg symmetric stretching vibration, at 400 and 519 cm−1
  • from the B1g, symmetric bending vibration, and at 513 cm−1 from the A1g asymmetric bending vibration [63][74]. The bands at 519 and 513 cm−1 overlap in the current spectra although they are known to be separated below 73 K [63][74]. In the case of nanoparticles (vs bulk TiO2), broader signals and a red
  • or blue shift in the Raman bands are observed [75]. The O–Ti–O vibration bands observed in Figure 6 are located at 626, 509, 409, 209, and 151 cm−1. The band at 151 cm−1 is the most intense and sharpest signal. The 209 cm−1 band is very weak and its intensity increases in the presence of Au. The
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

  • Jiajun Wang,
  • Xia Liu,
  • Gesmi Milcovich,
  • Tzu-Yu Chen,
  • Edel Durack,
  • Sarah Mallen,
  • Yongming Ruan,
  • Xuexiang Weng and
  • Sarah P. Hudson

Beilstein J. Nanotechnol. 2018, 9, 137–145, doi:10.3762/bjnano.9.16

Graphical Abstract
  • carbon can be clearly detected for Sa, Sb and Se. The D-band, located at 1387 cm−1, correlates to the disorder or defects in the graphitized structure (sp3-hybridized carbon), while the G-band (1540 cm−1) is assigned to the E2g mode of graphite and corresponds to the vibration of sp2-bonded carbon atoms
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2018

L-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions

  • Yan Yan,
  • Jie Li,
  • Fangbei Kong,
  • Kuankuan Jia,
  • Shiyu He and
  • Baorong Wang

Beilstein J. Nanotechnol. 2017, 8, 2680–2688, doi:10.3762/bjnano.8.268

Graphical Abstract
  • materials were characterized by FTIR analysis (Figure 1). For GO, aromatic C=C and C=O stretching vibrations can be clearly seen at ca. 1630 and 1743 cm−1. The strong peaks around 3438 and 1400 cm−1 are ascribed to absorbed water. After L-lysine was grafted onto GO, the CH/CH2 stretching vibration of the
PDF
Album
Full Research Paper
Published 13 Dec 2017

Synthesis of [{AgO2CCH2OMe(PPh3)}n] and theoretical study of its use in focused electron beam induced deposition

  • Jelena Tamuliene,
  • Julian Noll,
  • Peter Frenzel,
  • Tobias Rüffer,
  • Alexander Jakob,
  • Bernhard Walfort and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 2615–2624, doi:10.3762/bjnano.8.262

Graphical Abstract
  • ]. This study was performed with 3-21G for Ag and 6-31++G** for the other atoms to satisfy both accuracy of the investigations and appropriate computing time and resources. The structure parameters of [AgO2CCH2OMe(PPh3)] and fragments thereof have been optimized with no symmetry constraint. The vibration
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • closed forms of the photochromic molecule. For both isomeric molecular states, the features observed in the IET spectra are assigned with the help of computations that take the electron-vibration (EV) coupling into account. Results and Discussion The C5F-ThM photochromic molecule, used in this work, is
PDF
Album
Full Research Paper
Published 06 Dec 2017

Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication

  • Kangmei Li,
  • Dalei Jing,
  • Jun Hu,
  • Xiaohong Ding and
  • Zhenqiang Yao

Beilstein J. Nanotechnol. 2017, 8, 2324–2338, doi:10.3762/bjnano.8.232

Graphical Abstract
  • Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China 10.3762/bjnano.8.232 Abstract Surface texturing is an important approach for
PDF
Album
Full Research Paper
Published 06 Nov 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • vibration couplings and the left and right spectral densities: In our analysis the damping term Jλ in Equation 1 is introduced as an external parameter. We assume a constant damping of vibrational modes into bulk phonons of Jλ/2 = JL = JR = 5 × 1010 Hz. In the following we thus omit the label λ in the
  • includes all contributions. We checked that setting the elements of the electron–vibration coupling matrix Mλ to zero would yield the same result. This is expected since the energy-dependent rates are obtained from the trace of the matrix products (Equation 4) where only diagonal terms contribute. Notice
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • from the phenyl group (benzene ring) occurs at ≈1600 cm−1 and the C=C bond vibration at 1504 cm−1. The stretching of the ester group (O–C–O) occurs from 1165 to 1232 cm−1 [21]. Comparing the spectral band of bare PC with the 1, 2, and 3% MWCNT-loaded nanocomposites reveals that the carbonyl band (C=O
  • ) in the spectrum of the former is shifted from 1788 to 1768 cm−1. The C=C band at 1518 cm−1 is shifted to 1504 cm−1 and the bands at 1233 and 1200 cm−1 in the region of the asymmetric O–C–O stretching vibration are transferred to a band at 1218 cm−1 with a shoulder at 1258 cm−1. The changes in the
PDF
Album
Full Research Paper
Published 27 Sep 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • peaks of oleate ligands. The absorption peak at 1710 cm−1 (Figure 3f) corresponds to the stretching vibration of C=O in pure oleic acid (Figure 3a) which is replaced by two carboxylate stretching bands (1560 and 1447 cm−1 in Figure 3e), which indicates oleate ligand adsorption on the UCNP surface. Tween
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • νas(COO) and symmetric νs(COO) stretching vibrations of the COO− group, whereas the bands in the spectral region of 1277–1341 cm−1 are due to the coupled vibration of CH2 antisymmetric deformation and CH deformation modes [35][36]. According to the literature data [27], the band at 1516 cm−1 is
  • associated with the symmetric deformation vibration of NH3+, δs(NH3). Besides, the typical methionine S–C stretching mode at 685 cm−1 [37][38] and a clear resolved C–S–C stretching mode, ν(CSC), peaked at 554 cm−1 [39] are present in the spectrum. In the FTIR spectra of methionine and methionine sulfoxide a
  • NPs can also be proven by the presence of the vibration modes in the frequency range of 2961–2855 cm−1, attributable to the symmetric stretching of NH3+ ions [42]. The frequency of νs(COO) downshifts from 1414 to 1387 cm−1 upon stabilization of ferrite NPs with methionine molecules. The band near 1515
PDF
Album
Full Research Paper
Published 22 Aug 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • in the CF4 plasma discharge or they are formed due to ionization inside the mass spectrometer; the full range FTIR spectra are shown in Figure S2 in Supporting Information File 1. The characteristic region of the C–F bond stretching vibration in FTIR spectra ranges from 1218 to 1310 cm−1 (Figure 2b
  • modes in the 1278–1287 cm−1 region reduces further loosing nearly 50% of the initial absorbance intensity when an applied power of 250 W is used. The two frames in Figure 2b detail the peaks located at 1261 and at 1286 cm−1. The peak at 1261 cm−1 is associated to the vibration mode of CF3 radical [11
  • decreases due to conversion process taking place with other species in the discharge. On the other hand, the absorbance intensity trend of the CF2 vibration doesn’t show correspondence with its relative signal acquired with the mass spectrum: reactions involving this fragment may occur at higher powers just
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • SWCNTs with vibration frequencies at 1220, 1100, and 1050 cm−1 [41]. The weakening of a covalent bond in this series was explained by a hyperconjugation with the π-electron system. Asanov et al. selected four bands for the fluorinated graphite spectrum, which were assigned to vibrations of a CF group
  • surrounded by three CF neighbors (1230 cm−1), two CF neighbors and one bare carbon atom (1132 cm−1), one CF neighbor and two bare carbon atoms (1095 cm−1), and three bare carbon atoms (1045 cm−1) [42]. Evidently, the vibration of a certain bond may change its frequency depending of the curvature and type of
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach

  • Juan Ren and
  • Qingze Zou

Beilstein J. Nanotechnol. 2017, 8, 1563–1570, doi:10.3762/bjnano.8.158

Graphical Abstract
  • imaging because an increase of the speed can cause a loss of the tip–sample interaction and/or the annihilation of the cantilever tapping vibration, particularly when the imaging size is large. Existing efforts on high-speed TM imaging [6][7][8][9] only led to a speed increase up to three times at the
  • . Experimental Adaptive multiloop-mode imaging The AMLM aims to achieve high-speed dynamic-mode imaging by precisely tracking the sample topography, while minimizing the mean tip–sample interaction force per vibration period, . The key to the optimization of the mean tip–sample interaction force is to accurately
  • track the sample topography by the AFM z-axis piezo. AMLM imaging introduces a feedback control of inner–outer loop structure to regulate the mean cantilever deflection per vibration period (called the TM-deflection). Thus the averaged (vertical) position of the cantilever in each tapping period is kept
PDF
Album
Full Research Paper
Published 02 Aug 2017
Other Beilstein-Institut Open Science Activities