Search results

Search for "AFM" in Full Text gives 673 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

  • Mengdan Chen,
  • Jinshu Zeng,
  • Weiwei Ruan,
  • Zhenghong Zhang,
  • Yuhua Wang,
  • Shusen Xie,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2020, 11, 568–582, doi:10.3762/bjnano.11.45

Graphical Abstract
  • The mechanical properties of cells could serve as an indicator for disease progression and early cancer diagnosis. This study utilized atomic force microscopy (AFM) to measure the viscoelastic properties of ovarian cancer cells and then examined the association with the invasion of ovarian cancer at
  • light on the biomechanical changes for early diagnosis of tumor transformation and progression at single-cell level. Keywords: atomic force microscopy (AFM); cancer invasion; cancer migration; ovarian cancer cells; viscoelasticity; Introduction Ovarian cancer is a lethal gynecological malignancy with
  • cells could be detected biomechanically. At present, a variety of research technologies, such as optical tweezers, micropipette aspiration, magnetic twisting cytometry and atomic force microscopy (AFM), have been developed to characterize the mechanical properties of biological samples [7][8][9][10
PDF
Album
Full Research Paper
Published 06 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • force [13] using confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and reflection interference contrast microscopy (RICM). Fabrication conditions such as the type of polymer (e.g., thicker layers are formed by PEs having lower charge density) [14], concentration of the polymer
  • extended to weak PE assemblies [26]. The dissolution of a SiO2 core in a poly(allylamine hydrochloride) (PAH)/poly(methacrylic acid) (PMA) assembly with ammonium fluoride (NH4F) at a suitable pH contributed to both multilayer stability and colloidal stability as shown in the AFM images in Figure 2a–d [24
  • synthesis of NPs in the shell itself via the polyol reduction method has proved to be effective as it results in a dense and homogenous distribution of the NPs within the capsules [74]. Figure 5a,b shows TEM and AFM images of the successful incorporation and distribution of in situ synthesized silver NPs
PDF
Album
Review
Published 27 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • Berkin Uluutku Santiago D. Solares The George Washington University, Department of Mechanical and Aerospace Engineering, 800 22nd St. NW, Suite 3000, Washington, DC 20052, USA 10.3762/bjnano.11.37 Abstract Atomic force microscopy (AFM) is an important tool for measuring a variety of nanoscale
  • discuss a possible approach to develop an intermittent-contact conductive AFM mode based on Fourier analysis, whereby the measured current response consists of higher harmonics of the cantilever oscillation frequency. Such an approach may enable the characterization of soft samples with less damage than
  • contact-mode imaging. To explore its feasibility, we derive the analytical form of the tip–sample current that would be obtained for attractive (noncontact) and repulsive (intermittent-contact) dynamic AFM characterization, and compare it with results obtained from numerical simulations. Although
PDF
Album
Full Research Paper
Published 13 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • characterize the surface. Ti2O3 rows appeared as bright spots in both NC-AFM and STM images observed in the same area. High-resolution NC-AFM images revealed that the rutile TiO2(110)-(1 × 2) reconstructed surface is composed of two domains with different types of asymmetric rows. Keywords: non-contact atomic
  • clean surface is relatively easy. A well-known rutile TiO2(110) surface is the (1 × 1) structure [2]. The (1 × 1) surface has been studied using low-energy electron diffraction (LEED) [3][4], surface X-ray diffraction [5], non-contact atomic force microscopy (NC-AFM) [6][7][8][9], scanning tunneling
  • using LEED and STM has revealed that the (1 × 2) LEED pattern was observed even if the (1 × 2) structure is formed only partially as shown in Figure 1c [20]. This indicates that real-space imaging with atomic resolution, i.e., STM and NC-AFM, would be helpful for a careful determination of the surface
PDF
Album
Full Research Paper
Published 10 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • its layered nature (Supporting Information File 1, Figure S2). Here the thickness variation is confirmed using atomic force microscopy (AFM), and the results are given in Figure S3. This indicates that with an increase in the concentration of the electrolyte, the thickness is increased from 40 nm to
  • 140 nm (Figure S3), which corresponds with the TEM analysis [43] and BET-based surface area data. Hence from the TEM, BET, and AFM analysis, it can be concluded that the electrolyte concentration is important for the electrochemical exfoliation assisted synthesis of ultrathin graphene layers, and the
  • analyzer. AFM was used to study the thickness of the exfoliated layers. Electrochemical experiments All of the electrochemical ORR experiments were carried out in a conventional three-electrode system with a catalyst ink modified GCE as a working electrode, Hg/Hg2Cl2 and platinum foil (results were cross
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • microscopy (AFM). Transport measurements were made inside a 3He4He dilution refrigerator at temperatures below 400 mK, corresponding to the superconducting transition of Ti QPSJs [10][12]. All input/output lines were carefully filtered [13] to reduce the impact of the noisy electromagnetic environment. When
PDF
Album
Full Research Paper
Published 03 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • bombardment, the modified surface morphology of the flat substrates and nanorods was studied with a scanning electron microscope (SEM) Zeiss Sigma, operated at 20 kV accelerating voltage. An atomic force microscope (AFM) Shimadzu SPM-9500J3 was used to study the ripple formation on the flat ZnO substrates
  • . The AFM was operated in tapping mode with measuring areas of 2 × 2 and 5 × 5 µm. Results and Discussion Single crystal ZnO substrates First, we studied the influence of GCIB irradiation on flat ZnO single crystal samples. Their large flat surface allows to determine the main dependencies of ripple
  • formation on the GCIB parameters (incidence angle, accelerating voltage, and fluence). SEM and AFM images shown in Figure 2 and Figure 3, respectively, present the surface morphology of the substrates before and after Ar cluster bombardment at different incidence angles, θ = 0–80°. The acceleration voltage
PDF
Album
Full Research Paper
Published 24 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • the chosen approach for pp-KPFM are finally discussed. pp-KPFM Implementation The experiments were performed on the basis of noncontact AFM (nc-AFM) under ultrahigh vacuum (UHV) with a beam deflection setup operated in frequency-modulation (FM) mode at room temperature. In the following, we only
  • reported for samples processed under similar conditions [37][38]. The nc-AFM topographic images (Figure 7a) display a rather uniform contrast indicating that the donor and acceptor species have been finely mixed. However, specific contrasts in the KPFM potential images recorded in the dark (Figure 7b
  • -based devices, hybrid perovskite thin films and single crystals as well as type-II van der Waals heterojunctions based on transition metal dichalcogenides. Experimental Nc-AFM and pp-KPFM Noncontact-AFM (nc-AFM) experiments were performed with a ScientaOmicron VT-AFM setup in UHV at room temperature (RT
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • ; nanoparticle modeling; size effects; Introduction It is not possible to simultaneously observe and manipulate a nanoparticle using atomic force microscopy (AFM) as the imaging and manipulation tools are combined. As a result, dynamic modeling and simulation are essential in this field of research. For the
  • model. They studied the effect of dimensionless load and the transition parameter on the contact area. They emphasized the importance of the MD model that covers a large area of AFM surveys [5]. Owing to the importance of the AFM cantilever spring constant and its use in calculation of the rupture force
  • of protein bonds and Young’s modulus of nanoparticles, Clifford and Seah determined the AFM cantilever normal spring constant [6]. Korayem and Zakeri studied the effects of different parameters on the times and forces in a 2D manipulation. Using their proposed algorithm, the location of the
PDF
Album
Full Research Paper
Published 13 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • dT20–(APA)20–dT20, extended end-to-end through aromatic interactions, was visualized by AFM (Figure 4c). The left-handedness of the double-helical assembly dT20–(APA)20–dT20 observed in AFM correlated with the CD data. The stimuli-responsiveness of the SFM-supported chirality-imprinted double-helical
  • conductometric measurement-based data provided subnanomolar detection of mercury (≥0.1 nM, 0.02 ppb), which was 100 times lower than the permitted maximum quantity of mercury in water (≈10 nM, ≈2 ppb), as per the United States Environmental Protection Agency (USEPA). The AFM-based measurement also showed
  • porphyrin units were positioned at the terminal of a helical bundle that improved the directional insertion of the nanobarrel across the bilayer. AFM images showed that the assembled morphology of the hexagonally packed nanobarrels was made up of porphyrin-tethered DNA (Figure 8b). Stulz and co-workers
PDF
Album
Review
Published 09 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • the sensitivity to other frequency components and the magnitude of demodulation artifacts for a range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy imaging. Keywords: atomic force microscopy (AFM); multifrequency; demodulation
  • ; Kalman filter; Lyapunov filter; digital signal processing; field-programmable gate array (FPGA); Introduction Atomic force microscopy (AFM) [1] has enabled innovation in nanoscale engineering since it was invented in 1986 by Binnig and co-workers. Atomic-scale topographical resolution is achieved by
  • , which establishes the requirement for demodulation in AFM. In intermittent-contact constant-amplitude AFM [5], a constant cantilever oscillation amplitude is maintained by feeding back the demodulated fundamental amplitude of the deflection signal. The imaging of delicate biological samples [6][7][8] is
PDF
Album
Review
Published 07 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • a hexagonal pattern suggesting the crystalline nature of the synthesized N-rGO sheets. AFM height images of as-prepared rGO and N-rGO nanosheets are displayed in Figure 6a and Figure 6b, respectively. The rGO and N-rGO nanosheets are flat with an average thickness of about 3 nm and 3.5 nm
  • force microscopy (AFM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). X-ray diffraction patterns of the samples were collected in the range of 10–70° (2θ) using a Bruker D8 diffractometer with a Cu Kα source (λ = 0.154178 nm). The morphology of the samples was examined using a Tescan
  • °C·min−1 using a Mettler-Toledo-TG-850 apparatus. AFM measurements were performed using a CP2 atomic force microscope. Electrode preparation and electrochemical characterization The catalyst inks of as-synthesized rGO and reduced graphene oxide H-rGO were prepared by ultrasonication separately. A mixture
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • manipulated on a silica substrate with an atomic force microscope (AFM) in tapping mode. Initially, the NPs were immovable by AFM energy dissipation. However, annealed NPs became movable, and less energy was required to displace the NPs annealed at higher temperature. However, after annealing at 800 °C, the
  • particles became immovable again. This effect was attributed to the diffusion of Au into the Si substrate and to the growth of the SiO2 layer. Keywords: annealing; atomic force microscopy (AFM); Au nanoparticles; manipulation; melting; nanotribology; Introduction Gold is one of the most prominent
  • atomic force microscope (AFM) in order to study the effect of annealing on their tribological behavior. Experimental Nanoparticle synthesis A colloidal suspension of Au NPs was produced by reducing an aqueous solution of HAuCl4·H2O. The procedure consisted of adding 3 mL of 1% aqueous HAuCl4 (Sigma
PDF
Album
Full Research Paper
Published 06 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • Synergy2 Biotek plate reader. Atomic force microscopy (AFM). Drops (ca. 35 µL) of the chitosan/HA nanoparticle suspensions were deposited on a clean mica surface and left to dry overnight in Petri dishes at room temperature. A molecular force probe 3D AFM (MFP-3D, Asylum Research, Oxford Instruments
  • , Abingdon, UK) equipped with an OTESPA-R3 cantilever (Bruker, Camarillo, CA, USA) was used to acquire AFM images in air at room temperature in tapping mode. Igor-Pro AFM software (Oxford Instrument, UK) was used to analyse the images. Nuclease protection assay. The protection effect against nuclease
  • irreversible [29]. It is therefore important to assess whether in the same formulation HA nanoparticles are present together with unbound HA, which could potentially reduce binding and efficacy of the payload-carrying nanoparticles. Using AFM, we have shown that dialysis through membranes with a large MWCO
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • available STM scanner (Molecular Imaging/Agilent Technologies) fitted with a so-called STM/AFM electrochemical cell as previously described [24]. Pt and Au wires were used as a quasi-reference electrode (EPt/PtO = 0.9 V vs RHE) and a counter electrode, respectively. The reference electrode was immersed in a
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)

  • Seyed Mohammad Mahdi Dadfar,
  • Sylwia Sekula-Neuner,
  • Vanessa Trouillet,
  • Hui-Yu Liu,
  • Ravi Kumar,
  • Annie K. Powell and
  • Michael Hirtz

Beilstein J. Nanotechnol. 2019, 10, 2505–2515, doi:10.3762/bjnano.10.241

Graphical Abstract
  • successful implementation and a thorough comparison of their properties. Characterization of the surfaces by XPS and AFM All steps of the immobilization reactions were monitored by X-ray photoelectron spectroscopy (XPS) to validate the expected chemical reactions taking place (Figure 2). The
  • occurring in the spectra at 400.0 eV also result from the successful reactions. To confirm the quality of the functionalized layers, after each step of the functionalization process, the roughness of the samples was monitored by atomic force microscopy (AFM). The results are shown in Supporting Information
  • bare and functionalized glasses was characterized using surface-sensitive techniques, including atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). To map the surface roughness, AFM in tapping mode was conducted with a Dimension Icon (Bruker, Germany) device with HQ:NSC15/Al BS
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • -bending configuration in a similar manner as described in [33][34]. The NWs were bent in-plane with a substrate by an atomic force microscope (AFM) probe (ATEC−CONT cantilevers, Nanosensor, Neuchatel, Switzerland, C = 0.2 N·m−1) attached to a micromanipulator (MM3AEM, Kleindiek, Germany). FEM simulations
  • new configuration was elastically stable, that is, if the “angled” NW was moderately bent by the AFM tip either further or straightened and then released, it went back to its initial angled profile. Moreover, a complete fracture was difficult to achieve in such configuration, even under severe
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • study charge transport within 2D layers of organic semi-conductors (OSCs) using atomic force microscopy (AFM)-based lithography applied to self-assembled monolayers (SAMs), fabricated from appropriate organothiols. The extent of lateral charge transport was investigated by insulating pre-defined patches
  • within OSC-based SAMs with regions of insulating SAM made from large band gap alkanethiolates. The new method is demonstrated using a phenyl-linked anthracenethiolate (PAT), 4-(anthracene-2-ylethynyl)benzyl thiolate. I–V characteristics of differently shaped PAT-islands were measured using the AFM tip as
  • a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • (375 µs) and the CHCl3 solution (13 µs) further reinforces the idea of water-induced growth. Keywords: atomic force microscopy (AFM); luminescence; nanostructuration; polymer; self-assembly; surface; terbium complexes; Introduction The study of materials for the realization of novel magnetic [1][2][3
  • suitable for atomic force microscopy (AFM) imaging [24] as well as for its hydrophilic nature promoting the interaction with the deposited molecules. Indeed, muscovite mica has already been used for the deposition of magnetic materials such as FeCoN magnetic films [25] or tungsten oxide nanowires [21]. The
  • deposition (Figure 1) was carried out at room temperature by drop casting of a 0.35 mM cyclohexane solution of [Tb(hfac)3·2H2O]n onto the mica surface. Key parameters were the 24-hour aging of the samples at room temperature and the relative humidity of 90%. AFM was used to study the deposited material
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • Abstract Employing polymer cantilevers has shown to outperform using their silicon or silicon nitride analogues concerning the imaging speed of atomic force microscopy (AFM) in tapping mode (intermittent contact mode with amplitude modulation) by up to one order of magnitude. However, tips of the
  • cantilever made out of a polymer material do not meet the requirements for tip sharpness and durability. Combining the high imaging bandwidth of polymer cantilevers with making sharp and wear-resistant tips is essential for a future adoption of polymer cantilevers in routine AFM use. In this work, we have
  • any photo-processable polymer cantilever. Keywords: Atomic force microscopy (AFM); durability; imaging speed; polymer cantilever; silicon nitride tip; Introduction Atomic force microscopy (AFM) cantilevers have been developed for numerous applications since the invention of scanning probe microscopy
PDF
Album
Full Research Paper
Published 29 Nov 2019

A novel method to remove impulse noise from atomic force microscopy images based on Bayesian compressed sensing

  • Yingxu Zhang,
  • Yingzi Li,
  • Zihang Song,
  • Zhenyu Wang,
  • Jianqiang Qian and
  • Junen Yao

Beilstein J. Nanotechnol. 2019, 10, 2346–2356, doi:10.3762/bjnano.10.225

Graphical Abstract
  • , China School of Physics, Beihang University, Beijing 100191, China 10.3762/bjnano.10.225 Abstract A novel method based on Bayesian compressed sensing is proposed to remove impulse noise from atomic force microscopy (AFM) images. The image denoising problem is transformed into a compressed sensing
  • imaging problem of the AFM. First, two different ways, including interval approach and self-comparison approach, are applied to identify the noisy pixels. An undersampled AFM image is generated by removing the noisy pixels from the image. Second, a series of measurement matrices, all of which are identity
  • matrices with some rows removed, are constructed by recording the position of the noise-free pixels. Third, the Bayesian compressed sensing reconstruction algorithm is applied to recover the image. Different from traditional compressed sensing reconstruction methods in AFM, each row of the AFM image is
PDF
Album
Full Research Paper
Published 28 Nov 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • ], confocal microscopy, scanning electron microscopy (SEM) [12] and atomic force microscopy (AFM) [16][17] have been employed to investigate cell–substrate interactions. Fluorescence and confocal microscopy are traditional techniques to investigate the intra- and intercellular processes in biological studies
  • , but the spatial resolution is poor [18]. SEM is capable of detecting the surface features of substrates and cells on the nanoscale, but the sample preparation is time-consuming and complex [19]. AFM is emerging as a valuable tool for true atomic resolution imaging [20] and is widely used in
  • biomechanical studies [21]. Atomic force acoustic microscopy (AFAM) is a technique based on AFM for nondestructive imaging. This technique operates on a dynamic mode in which the AFM cantilever vibrates upon ultrasound excitation. Accordingly, AFAM shows the ability to measure nanomechanical properties and is
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • ) AFM images of the OPVs with different concentrations of FeS2 recorded in the noncontact mode. The roughness of the OPV surface is increased gradually as the FeS2 concentration increases (Table 1 and Figure 7), such that traps for the charge carriers could occur and the leakage current could increase
  • OPV layers cross-section. We observe thicknesses of each layer that acceptably correlate with the sheet thicknesses determined by the AFM measurement in contact mode, namely ITO ≈197 nm, PEDOT:PSS ≈40 nm and PTB7:PC71BM active layer ≈113 nm. Figure S3(a–d) in Supporting Information File 1 shows the
  • image (Figure S3e, Supporting Information File 1) taken at low voltage (1 kV). These SEM images are complementary to the AFM images shown in Figure 7. Some NCs are highlighted by red circles, however, it is not trivial to unambiguously identify the NCs because they are immersed in the polymer matrix
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • attaching it to the tip of an atomic force microscope (AFM). This can also be achieved by mounting a high-purity diamond nanopillar on an AFM with an NV center placed 10 nm from its end, achieving a sensitivity of 56 nT·Hz−1/2, as reported in [37]. Nanodiamond scanning tips currently suffer from a
  • mounted on a thin platform, typically of less than 1 μm thickness. Coupled with the nanopillar, this diamond film makes a scanning probe when mounted to an AFM head. It is expected that this method can enhance the photoluminescence collected from the NV by a factor of 10. Finally, ND embedded in a living
  • relaxation time (T1) and spin dephasing time (T2) Hahn-echo measurements. The formation of hybrid systems between NDs and SPIONs is of growing interest to enhance NV magnetometry in the local nanoenvironment. A single NV center was functionalized with a SPION by an AFM pick-and-place approach in [66]. It is
PDF
Album
Review
Published 04 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • conditions and the capacity dimension of the nanowires was obtained. Keywords: atomic force microscopy (AFM); capillary force; metal-assisted chemical etching (MACE); multifractal analysis; nanoarchitectonics; nanowires; self-assembly; Introduction In the last years, huge progress was made regarding the
  • (AFM). Among the scanning probe techniques, AFM shows a peculiar capability to quantitatively characterize features with nanoscaled dimensions. To gain insight over the emergence of the organized nanoarchitectures we applied multifractal analysis to the AFM images. We have found that a single fractal
  • ) = (q − 1)D(q). Thus, an alternative way to determine the multifractal spectrum is to calculate D(q) from the above equation and to substitute it in Equation 7. Results and Discussion Elastocapillary self-assembly in MACE Si NWs Figure 2 shows typical AFM images of the MACE Si NWs investigated in the
PDF
Album
Full Research Paper
Published 31 Oct 2019
Other Beilstein-Institut Open Science Activities