Search results

Search for "MBE" in Full Text gives 31 result(s) in Beilstein Journal of Nanotechnology.

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • 520.8 cm−1. Interestingly, the observed Raman spectrum for SP900 is very similar to that of the product of silicon and phosphorus MBE co-deposition at 3:2 molar ratio [34]. This substance was reported as amorphous; however, it could contain Si3P4 NPs along with other SixPy compounds. Factor group
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • multiple nanostructures, which are grown by molecular beam epitaxy (MBE) [1]. It has been widely used in the fields of free space optical communication [2][3], gas detection [4][5], and biological research [6][7]. Because the QCL is a narrow linewidth and high-power laser working in the mid-infrared to
PDF
Album
Full Research Paper
Published 23 Sep 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • beam epitaxy (MBE). The films were 20 nm thick, continuous, and smooth monocrystalline layers. The MBE equipment provided uniformity of the film thickness within 3% on the 1″ lateral size. The film composition x was measured in situ using X-ray photoelectron spectroscopy (all from SPECS, Berlin) with a
PDF
Album
Full Research Paper
Published 25 Aug 2022

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • obtained via chemical methods [28][29] or via vapor–solid–liquid (VLS) and, less frequently, vapor–solid–solid (VSS) mechanisms. A metallic droplet (liquid or solid) acts as a catalyst, in chemical vapor deposition (CVD), or as a seed, in molecular beam epitaxy (MBE), for the NW growth [7][30][31]. By
  • report a spontaneous morphology modification, from islands to nanowires, in Mn-rich GeMn nanoparticles. The growth is initiated via reaction of a thin Mn wetting layer, evaporated by MBE, with a Ge(111) substrate. Morphology and microstructure of the NWs have been studied by scanning electron microscopy
  • . Experimental Samples were grown in a MBE chamber with a base pressure of 3 × 10−11 Torr. Ge(111) wafers were ultrasonically cleaned in methanol and trichloroethylene, followed by removal of the native oxide using sulfuric acid and formation of a volatile oxide by dipping in H2O2/NH3OH/H2O. Prior to Mn
PDF
Album
Full Research Paper
Published 28 Apr 2021

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • wetting layer in between. The molecular beam epitaxy (MBE) experiments show that there is no material exchange between the gold droplets formed on the silicon oxide substrate. The data indicate a re-evaporation process at elevated temperatures, which is due to a temperature-induced overall reduction of
  • on silicon must be stable. This wetting layer can be considered as a mediating communication layer, or as a material transport layer, which enables Ostwald ripening processes to occur. Indeed, the MBE-formed gold droplets on silicon show material fluctuation between the droplets. Here, the increased
  • Information File 1) shows the set of values required for calculating the free energy per unit area and its first derivative for gold on silicon oxide and gold on silicon. Experiments The UHV−PVD experiments were carried out in a MBE chamber with a basal pressure of 2 × 10−10 mbar. Two different substrates
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • techniques Samples of the nominal structure Pt(3 nm)/[Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) were prepared on Al2O3() substrates using a DCA M600 MBE system with a base pressure of 10−10 mbar. Before deposition, the substrates were cleaned from organic contaminations with ethanol and isopropanol ex situ and heated at
  • cooling from room temperature to 10 K in magnetic field of H = 4.5 kOe. For s3 we measured RRR = 18.6, a value which is typical for MBE-prepared S/F structures in the epitaxial regime of growth [47][48]. Similar values of RRR from 16 to 20 were obtained for all samples except RRR = 3.4 for s6, which was
PDF
Album
Full Research Paper
Published 21 Aug 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • our GaAs nanowire detector working in the photoconductor mode is by a factor of 1.5 better than the value obtained recently on molecular beam epitaxy (MBE)-grown Si-doped GaAs nanowires with a carrier concentration of 1.47 × 1017 cm−3, working in the field-effect transistor (FET) mode at similar
PDF
Album
Full Research Paper
Published 29 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • radio-frequency plasma-assisted molecular beam epitaxy (RF-MBE) [2][7][10][11], DC [12][13] and RF [1][3][6] magnetron sputtering, pulsed laser deposition (PLD) [14][15], plasma-enhanced atomic layer deposition (PE-ALD) [16], chemical vapor deposition (CVD) [17], metal–organic chemical vapor deposition
  • optical absorption (OA) spectroscopy investigations in w-ZnMgO films produced by RF-MBE in the composition range x = 0.00–0.37 [36] and x = 0.27–0.55 [10], respectively. The observed Stokes shifts were indicative of the presence of band tail states introduced by alloying, while the “S-shaped” temperature
PDF
Album
Full Research Paper
Published 12 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • ]. Results and Discussion Sample preparation Single-crystalline MgO(001) (henceforth designated MgO) epi-polished substrates (CRYSTAL GmbH, Germany) with a size of 10 × 5 × 0.5 mm3 were annealed at 800 °C for 5 min in the ultrahigh vacuum (UHV) molecular beam epitaxy (MBE) chamber with a residual pressure
  • below 10−10 mbar (SPECS, Germany). Then, depending on the desired structure, either the Pd1−xFex alloy layer or the VN layer was deposited. The Pd1−xFex layers were grown by means of UHV MBE following a three-step procedure described in detail in [33]. Metallic Pd (99.95% purity, EVOCHEM GmbH, Germany
  • was 20 cm, and the deposition rate was 0.2 nm/min. To grow heterostructures, the samples on the molybdenum holder were moved without breaking vacuum via the UHV transfer line between the MBE and MS deposition chambers as well as the analysis chamber (SPECS, Germany). To perform a comparative study
PDF
Album
Full Research Paper
Published 15 May 2020

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • -electrospinning (MBE), modified free surface electrospinning (MFSE), oblique section free surface electrospinning (OSFSE) and spherical section free surface electrospinning (SSFSE), designed for high-throughput preparation of high-quality nanofibers, are presented in this paper. The mechanisms of fiber
  • preparing a nanofiber web [20]. The spinning parameters and yields of the established ES techniques are compared in Table 1. In our previous work [21][22], a modified bubble electrospinning (MBE) method was proposed to fabricate high-quality PAN nanofibers at high yield. Moreover, we found that the addition
  • of sodium dodecyl benzene sulfonate (SDBS) could significantly reduce the surface tension of the spinning solution facilitating the spinning process [24]. The mass production of silk fibroin nanofibers was successfully accomplished by this method [23]. A schematic of the MBE device is illustrated in
PDF
Album
Full Research Paper
Published 15 Nov 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • epitaxy (MBE) on an n-doped Si(111) substrate. They consist of an intrinsic multiple quantum-well structure grown on a Si-doped n-GaN base of about 600 nm length. The active region is composed of four (In,Ga)N insertions with an In content of (20 ± 10)% and a thickness of 3 ± 1 nm. The insertions are
  • the maintenance of the MBE system, and A.-K. Bluhm for SE micrographs. Furthermore, we are thankful to Alexander Kuznetsov for a critical reading of the manuscript. Financial support by the European Commission (Project DEEPEN, FP7-NMP-2013-SMALL-7, Grant Agreement no. 604416) is gratefully
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • synthesizing large-area 2D TMDCs have been reported, including mechanical exfoliation, sulphurization of metal thin films, mass transport, molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) [6][7]. In particular, CVD is considered to be an attractive and very promising approach for large-scale
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • chamber molecular beam epitaxy (MBE) system delivered by SVT Associates. The substrates were kept at room temperature. The background pressure was below 5 × 10−10 Torr. The purity of sublimated ingots for both Te and Se was 7N. To avoid cross-contamination during the deposition of Te or Se only one
PDF
Album
Full Research Paper
Published 21 Jan 2019

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • (λ = 0.154 nm). A Renishaw InVia Raman spectrometer was used for Raman investigations. Results and Discussion Photoluminescence properties of InAs/GaAs heterointerfaces The photoluminescence properties of vertically stacked QD arrays grown by using molecular beam epitaxy (MBE) are well studied in [24
  • ][25]. But the IBD method differs from MBE. Therefore, it remains relevant to research the vertical stacking of QDs grown by using IBD. In the beginning, ST#1 samples were studied. The statistical analysis by the threshold tool in the Image Analysis 2.1.2 program showed that the density of QDs in the
  • large single-QD spectrum [51][52][53]. The red-shift is also described in [24] for heterostructures with five QD layers of InAs and in [25] for heterostructures with 1–20 QD layers of In0.5Ga0.5As. In both cases, the heterostructures were grown by using MBE. As a comparison of the possibilities of
PDF
Album
Full Research Paper
Published 02 Nov 2018

Silicene, germanene and other group IV 2D materials

  • Patrick Vogt

Beilstein J. Nanotechnol. 2018, 9, 2665–2667, doi:10.3762/bjnano.9.248

Graphical Abstract
  • beam epitaxy (MBE) [1][2] and at around the same time on zirconium diboride thin films grown on Si(111) substrates by Si segregation through the film [3]. The synthesis of silicene further launched an intensive search for other 2D elemental materials synthesized under ultrahigh vacuum by MBE-like
PDF
Album
Editorial
Published 10 Oct 2018

Non-equilibrium electron transport induced by terahertz radiation in the topological and trivial phases of Hg1−xCdxTe

  • Alexandra V. Galeeva,
  • Alexey I. Artamkin,
  • Alexey S. Kazakov,
  • Sergey N. Danilov,
  • Sergey A. Dvoretskiy,
  • Nikolay N. Mikhailov,
  • Ludmila I. Ryabova and
  • Dmitry R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 1035–1039, doi:10.3762/bjnano.9.96

Graphical Abstract
  • synthesized by MBE. ZnTe and CdTe buffer layers, a CdTe-rich mercury cadmium telluride relaxed layer, a 3D Hg1−xCdxTe layer, and a CdTe-rich cap layer were successively grown on a GaAs (013) semi-insulating substrate (see the inset in upper right corner of the Figure 1). The active 3D Hg1−xCdxTe layer
PDF
Album
Letter
Published 29 Mar 2018

Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy

  • Alexey D. Bolshakov,
  • Alexey M. Mozharov,
  • Georgiy A. Sapunov,
  • Igor V. Shtrom,
  • Nickolay V. Sibirev,
  • Vladimir V. Fedorov,
  • Evgeniy V. Ubyivovk,
  • Maria Tchernycheva,
  • George E. Cirlin and
  • Ivan S. Mukhin

Beilstein J. Nanotechnol. 2018, 9, 146–154, doi:10.3762/bjnano.9.17

Graphical Abstract
  • concentration in the nanostructures exceeds 5∙1019 cm−3. Keywords: A3B5 on Si; epitaxy; GaN; MBE; nanowires; nanotubes; nanotube-like nanostructures; Si; Introduction Gallium nitride quasi-one-dimensional nanostructures such as nanowires (NWs) and nanotubes (NTs) synthesized by means of plasma-assisted
  • ) formation of a GaN shell over the NW template (e.g., ZnO) followed by the template NW removal [14]; 3) selective area molecular beam epitaxy (MBE) growth of GaN on sapphire (111) substrates over titanium mask [15]; and 4) MBE deposition of GaN on Si(111) substrates covered by a silicon oxide layer in the
  • absence of a doping flux [16]. Compared to other widely studied III–V NWs (e.g., Al(Ga, In)As), which can be synthesized by MBE on Si substrates via a vapor–liquid–solid (VLS) mechanism that uses catalyst droplets, GaN NWs grow according to the self-induced mechanism in the absence of catalyst [17][18
PDF
Album
Full Research Paper
Published 15 Jan 2018

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • grown by molecular beam epitaxy (MBE) on GaAs(111)B and Si(111) substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i) a lower influence of the polytypic nature of
  • [23][24]. Be has been the main choice to produce p-type GaAs layers and nanowires grown by molecular beam epitaxy (MBE) [25][26][27][28]. However, severe drawbacks like segregation at high concentration, a large diffusion coefficient prohibiting abrupt doping profiles and high toxicity have motivated
  • can have polar planes (ZB or WZ) whereas Si has not [43][45]. Therefore, it is very important to study the effect introduced by the substrate on the physical properties of Mg-doped GaAs nanowires. In this work, we study two samples containing Mg-doped nanowires, grown by MBE on GaAs(111)B and Si(111
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • deposition (PLD), or magnetron sputtering [5][6][7][8][9]. However, the first disappointments also appeared immediately. Namely, single crystals, ceramics sintered from coarse-grained powders and single-crystalline films deposited by molecular beam epitaxy (MBE) were never ferromagnetic. Other synthesis
PDF
Album
Review
Published 07 Dec 2016

Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment

  • Ann-Kathrin Kleinschmidt,
  • Lars Barzen,
  • Johannes Strassner,
  • Christoph Doering,
  • Henning Fouckhardt,
  • Wolfgang Bock,
  • Michael Wahl and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2016, 7, 1783–1793, doi:10.3762/bjnano.7.171

Graphical Abstract
  • an established powerful method to monitor the epitaxial growth of monocrystalline semiconductor layers in situ [6][7] – for instance for molecular beam epitaxy (MBE). The RAS technique employs reflectometric as well as interferometric information, based on the difference in optical surface
  • contribution have been grown with molecular beam epitaxy (MBE) in a R450 MBE system from DCA Instruments Oy, Turku, Finland. Base and working pressure of the system are (8–9) × 10−10 hPa and (1–2) × 10−10 hPa, respectively. For the experiments concerning the accuracy of the etch depth determination, described
  • growth and reactive ion etching (RIE) two similar EpiRAS instruments by Laytec, Berlin, Germany, are employed. In MBE growth RAS is well established meanwhile [6][7] and optical access is provided easily. The use of a RAS system in combination with RIE – especially a parallel plate reactor as in our case
PDF
Album
Full Research Paper
Published 21 Nov 2016

Organized films

  • Maurizio Canepa and
  • Helmuth Möhwald

Beilstein J. Nanotechnol. 2016, 7, 406–408, doi:10.3762/bjnano.7.35

Graphical Abstract
  • tools and new preparation methods [23], which varied significantly from the more traditional deposition from solution [24]. This is the case for MBE-like deposition in vacuum or UHV conditions [25], which is of current interest in the area of organic photovoltaics [26]. This also applies for biological
PDF
Editorial
Published 09 Mar 2016

Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

  • Jose Alberto Alvarado,
  • Arturo Maldonado,
  • Héctor Juarez,
  • Mauricio Pacio and
  • Rene Perez

Beilstein J. Nanotechnol. 2015, 6, 971–975, doi:10.3762/bjnano.6.100

Graphical Abstract
  • , they can be used in many applications, such as gas sensors [4]. A wide range of techniques to deposit thin films are used, such as molecular beam epitaxy (MBE) [5], single-source chemical vapor deposition (SS CVD) [6], metalorganic chemical vapor deposition (MOCVD) [7], sol–gel [8], spray pyrolysis [9
PDF
Album
Full Research Paper
Published 16 Apr 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • (CVD) [7], molecular beam epitaxy (MBE) [8], pulsed laser deposition (PLD) [9], vapor phase transport (VPT) [10], and thermal evaporation [11]. However, these methods are considered to be high-cost techniques since they require complex, expensive equipment, high vacuum conditions and high operation
PDF
Album
Full Research Paper
Published 12 Mar 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • Marseille Cedex 20, France 10.3762/bjnano.5.259 Abstract We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up
  • positioned [28]. We have evolved an efficient and simple electrochemical process that joins focused-ion-beam (FIB) lithography and galvanic reaction to selectively prepare gold nanoparticles in well-defined locations. Afterwards these nanoparticles are used for the molecular beam epitaxy (MBE) growth of
  • ordered SiGe NW arrays with predefined NW positions and diameters. Here we report on the optical properties of such MBE grown NWs. Experimental A schematic overview of the various steps used in the growth process is given in Figure 1. The steps consisted of: (a) rapid thermal oxidation (RTO); (b) FIB
PDF
Album
Full Research Paper
Published 30 Dec 2014

Si/Ge intermixing during Ge Stranski–Krastanov growth

  • Alain Portavoce,
  • Khalid Hoummada,
  • Antoine Ronda,
  • Dominique Mangelinck and
  • Isabelle Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2374–2382, doi:10.3762/bjnano.5.246

Graphical Abstract
  • ) the composition of large Ge dome islands grown by gas-source molecular beam epitaxy (GS-MBE) and buried under a Si cap [36]. APT measurements show that these islands are made of a more Ge-rich core (≈55 atom % Ge) and an increasingly Ge-deficient shell (≈15 atom % Ge). Despite the strong Si/Ge
  • deposition [34]. Ge islands exhibiting a Ge-rich core were shown to be related to growth conditions promoting far-from-equilibrium states, controlled by kinetic processes, which is more typical for the case of MBE growth [34]. Equilibrium is reached through free energy minimization, taking into account the
  • experience significant strain-driven alloying. Our observations are in agreement with strain-driven and diffusion-limited atomic redistribution during MBE growth of dome islands. However, our results lie somewhat between the two extreme cases shown in [34], namely: (1) near-equilibrium islands with a Si-rich
PDF
Album
Full Research Paper
Published 09 Dec 2014
Other Beilstein-Institut Open Science Activities