Search results

Search for "SPM" in Full Text gives 95 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • ) awarded to her from SERB, Department of Science and Technology. The authors would like to acknowledge the Department of Science and Technology, India, for funding the SPM facility at IUAC, New Delhi under the Intensification of Research in High Priority Areas (IRHPA) project. Competing Interests The
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • microscopy (SPM), the tip plays a fundamental role in the achievable lateral resolution of the image. The focused electron-beam induced deposition (FEBID) [34] technique has been adapted to fabricate tips for SPM, for example, to enhance commercial platinum–iridium alloy (Pt-Ir)-coated conductive tips [35
PDF
Album
Full Research Paper
Published 15 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • imaged a blend of polystyrene and low-density polyethylene (PS/LDPE) sample (SPM LABS LLC., Tempe, USA), mounting a RTESPA-300 cantilever (Bruker) and using both methods with the same ORT parameters, that is, 50 nm peak-to-peak amplitude and 2 kHz ORT frequency. Figure 5 shows 250 × 250 pixels images
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • Tobias Dickbreder Franziska Sabath Lukas Holtkemeier Ralf Bechstein Angelika Kuhnle Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany 10.3762/bjnano.14.101 Abstract Scanning probe microscopy (SPM) techniques are widely used to study the structure and
  • properties of surfaces and interfaces across a variety of disciplines in chemistry and physics. One of the major artifacts in SPM is (thermal) drift, an unintended movement between sample and probe, which causes a distortion of the recorded SPM data. Literature holds a multitude of strategies to compensate
  • for drift during the measurement (online drift correction) or afterwards (offline drift correction). With the currently available software tools, however, offline drift correction of SPM data is often a tedious and time-consuming task. This is particularly disadvantageous when analyzing long image
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • ), driven by a Mimea scanning probe microscope (SPM) controller (SPECS-Nanonis). Topographic imaging is performed in FM mode (FM-AFM) in the attractive regime, with negative frequency shifts of a few Hz and vibration amplitudes of a few tens of nm. All experiments were performed with Pt/Ir coated silicon
  • cantilevers (PPP-EFM, Nanosensors, resonance frequency in the range 45–115 kHz), annealed in situ to remove atmospheric contaminants. The dual-heterodyne KPFM mode was implemented by combining the SPM unit with two digital lock-ins from Zurich Instruments (lock-in 1: MFLI, lock-in 2: HF2LI). Both are equipped
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
PDF
Album
Full Research Paper
Published 14 Jun 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • length of 5 μm were produced at CTNano/UFMG [59][60][61]. Morphological analysis was carried out by scanning electron microscopy (SEM) in a Quanta 200 FEG, using secondary electrons between 2 and 10 kV. Atomic force microscopy (AFM) was carried out on a Bruker MultiMode8 SPM using the intermittent
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • the direction of new probes and further promotes the broader and deeper application of scanning probe microscope (SPM). Keywords: AFM; carbon nanotube probe; colloid probe; metal probe; Introduction AFM represents a well-established technique for the investigation of the nanosurface morphology
  • percussive mode AFM imaging, and the growth of PdNWCNT does not significantly decrease the cantilever spring constant and cantilever mass factor. PdNWCNTs showed better performance than standard CNTs in some SPM applications. For example, because it is difficult to form good ohmic contact CNTs, the existence
  • BDD-AFM probe, which is particularly suitable for complex SPM experiments based on BDD properties. The probe is mainly a conductive BDD sphere attached to an embedded microelectrode at the end of a tipless cantilever beam. The AFM cantilever beam is completely insulated except for the contact pad on
PDF
Album
Review
Published 03 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • various functional components of the AFM instrument. A subsequent section entitled “Performance of the SPM” is dedicated to an analysis of the performance specifications of relevant AFM components such as its interferometric deflection sensor with subsections “Relevant AFM noise sources”, “Force gradient
  • positioning of the fiber end outside the long axis of the cantilever to measure torsional cantilever oscillation modes (see section “Performance of the SPM”) or the approach of the sample to the (cantilever) tip. An additional position of the shields opens a small access hole to the sample surface permitting
  • above the central axis of the cantilever or towards the cantilever edges to pick up torsional cantilever deflections (see section “Performance of the SPM”). In order to maximize the sensitivity of the interferometric cantilever deflection measurement, a fiber-to-cantilever distance between two adjacent
PDF
Album
Full Research Paper
Published 11 Oct 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • possible time-dependent elastic behavior. Data processing of AFM AFM data were processed using the JPK SPM Data Processing program (DP) version 6.1.111. Force curves were extracted from the generated files, and four force–distance curves per particle were selected from pixels representing the middle of
PDF
Album
Full Research Paper
Published 16 Aug 2022

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • acceleration voltage to record the TEM images. The grid preparation and image processing were performed as stated above for SEM. AFM AFM was performed with a Multimode quadrex SPM with Nanoscope IIIe controller (Veeco Instrument Inc) operated under ambient conditions to determine the particle size using the
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • , convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data. Keywords: atomic force microscopy (AFM); deep learning; machine learning; neural networks; scanning probe microscopy (SPM); Review Introduction: traditional machine learning vs deep learning Machine
  • the excitement surrounding them. In this work, after introducing some of the basic structure and functionality of NNs, we concentrate on the applications of deep learning, primarily CNN, to scanning probe microscopy (SPM). The combination of improved scanning speeds, which will enable acquisition of
  • large image data sets, and computational techniques to generate training images forebodes an increasing role of this method for scanning probe techniques. Deep learning applications, of which a few representative case studies are presented here, include both image and spectroscopic SPM data. In general
PDF
Album
Review
Published 13 Aug 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • the sample. Nevertheless, the contamination from solvent introduction can be reduced down to conditions compatible with high-resolution scanning probe microscopy (SPM) techniques [10][12]. Buckminsterfullerene C60, scheme in Figure 1b, is among the most extensively studied molecules in surface science
  • , especially in SPM under UHV conditions. The ease of its thermal evaporation, the organised structure generally obtained, and the potential of its uses have made C60 a model case for on-surface molecular studies [19][20][21][22][23][24][25][26][27]. Two-dimensional C60 layers have been observed on metals [20
  • microscope (nc-AFM) working at room temperature to study formation and shape of C60 islands on three substrates with different intrinsic properties. These are, first, Au(111), a metal surface widely used in SPM studies, second, KBr(001), a bulk insulator allowing for the decoupling of molecular species and
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • and reduce the curtain effect during FIB polishing. The Ga+ beam of the FIB was adjusted to 30 kV and 1 nA to mill a cross section of the wing while polishing was carried out under 30 kV, 16 kV and 5 kV, all of them with a beam current of 50 pA. Determination of the SPM parameters The sample thickness
  • standard one present in the Asylum Cypher ES SPM. Al2O3 reference sample We made reference samples of a material with a well-known relative permittivity. Applying our method to this reference sample, we validated the technique presented in this paper. Our reference samples were photolithographically
PDF
Album
Full Research Paper
Published 28 Jan 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • to AFM measurements on a fold in an eleven layers thick graphene flake. Supporting Information Supporting information features the theoretical models for deposited and compressed folded edges, the experimental methods (including sample preparation, SPM characterization and near-field tip-enhanced
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • ; integrated PIN diode; nanoprobing; scanning probe microscopy (SPM); scanning microwave impedance microscopy (sMIM); spectroscopy; Introduction In “front end of line” (FEOL) processing, the control, detection, and quantification of the effective 2D distributions of active dopants in semiconductors are
  • crucial to optimize and increase the device integration. In order to map the electrical properties of microelectronic materials with a high spatial resolution, scanning probe microscopy (SPM), based on atomic force microscopy (AFM), offers several modes based on the control of electrical conduction and on
  • BEOL steps were accomplished. The SPM electrical measurements were performed in the cross section of the chip at the wafer level. In order to enable a stable and constant nanoscale contact between the sensor tip and the sample, a surface with a low roughness is required. For this purpose, the sample
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • using a spectrophotometer SPM-2 and an electrometrical amplifier U1-7, with a measurement error below ±1.0%. All experiments were performed at room temperature (T ≈ 20 °C). Results and Discussion Figure 1 shows the transmission spectra T = f(λ) of the separate amorphous thin films Ge0.30As0.04S0.66 (1
PDF
Album
Full Research Paper
Published 20 Nov 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • will foster further investigation with more robust theoretical frameworks such as by density functional theory. Results and Discussion SPM imaging modes The variability observed in differing scanning probe imaging modes originates from the applied feedback mode, different tunnelling parameters, or the
  • several modes of SPM imaging to differentiate among structures that might otherwise be assumed equivalent. Each imaging mode highlights different defect features so that when combined, a greater understanding of the defect is achieved. In general, however, we found AFM with Si-terminated tips to often be
  • using a tungsten filament held at 1600 °C [93]. Image and data acquisition was done using a Nanonis SPM controller and software, with the imaging parameters for each of the 6 SPM analysis modes described in the text. The height setpoint reference was taken as the tip–sample separation over a H–Si atom
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • were performed in constant-current mode using an Omicron Scala SPM controller. All experiments were performed in the thermostatted environment (21.5 ± 0.5 °C) of the NanoLab Nijmegen. (a) Molecular structure of MnTUPCl. (b) Molecular structure of MnTUPOAc. (c) STM images of a monolayer of MnTUPCl at a
PDF
Album
Full Research Paper
Published 24 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • greatly increased leading to a strong local near field confined at the tip apex. This gives rise to the enhanced sensitivity of tip-enhanced Raman spectroscopy (TERS). TERS combined with scanning probe microscopy (SPM) also allows for the collection of correlated topography and optical images [42][43
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • instrumentation setup is connected to commercial AFM equipment (Figure 1). The following list gives a detailed description of the instrumentation: A SPM, Bruker / Veeco / Digital Instruments Nanoscope IV Dimension 3100 device was used, which was upgraded with a closed-loop x–y nanopositioning stage (nPoint, Inc
PDF
Album
Full Research Paper
Published 04 May 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • the current section. Practical and instrumentation challenges for the proposed methods in the context of real SPM experiments are summarised in the Discussion section, such as data acquisition difficulties when multiple weak signals at high frequencies are measured. Possible solutions are also
PDF
Album
Full Research Paper
Published 13 Mar 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • bombardment, the modified surface morphology of the flat substrates and nanorods was studied with a scanning electron microscope (SEM) Zeiss Sigma, operated at 20 kV accelerating voltage. An atomic force microscope (AFM) Shimadzu SPM-9500J3 was used to study the ripple formation on the flat ZnO substrates
PDF
Album
Full Research Paper
Published 24 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • describe the general setup that has been used to implement data-cube pump–probe-KPFM (Figure 1b and Figure 1c). Additional technical information is provided in the experimental section. We kept the standard SPM controller configuration for frequency-modulation KPFM (FM-KPFM). Here, the electrostatic forces
  • are detected by demodulating the modulated component (ωmod) of the frequency-shift signal (Δf) with the LIA. The reference bias modulation voltage (Vmod, ωmod) and the compensation voltage generated by the KPFM feedback loop (VKPFM) are internally summed by the SPM unit. To generate the modulated bias
  • . Switching the controller configuration from standard KPFM to pp-KPFM was done by synchronizing the AWG unit with the spectroscopic ramps of the SPM controller by means of TTL pulses and by using predefined sequences of pulses and continuous-wave (cw) dc signals stored in the memory of the AWG. Note that in
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • LabVIEW software (National Instruments GmbH, Munich, Germany) for recording the cyclic voltammograms (CVs). Electrochemical scanning tunneling microscopy (EC-STM) measurements All EC-STM measurements were performed with an Agilent Technologies 5500 scanning probe microscope (SPM) and a commercially
  • and EC-SPM Studies of Electrode Kinetics and Electrode Structure” (University of Bonn, Germany). Author contributions: L. X. Zan and A. A. Abd-El-Latif designed experiments suggested by H. Baltruschat and L. X. Zan; D. Xing and A. A. Abd-El-Latif performed the electrochemical studies and
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019
Other Beilstein-Institut Open Science Activities