Search results

Search for "X-ray" in Full Text gives 954 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • -fabricated metal carboxylates as metal precursors. To the best of our knowledge, the synthesized particles are the smallest BiFeO3 particles ever prepared by any method. The samples were characterized by X-ray powder diffraction, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy
  • analyze the BiFeO3 nanomaterial are powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible reflectance spectroscopy. Furthermore, we investigated the photocatalytic efficiency of this nanomaterial under visible light in the degradation of rhodamine B (RhB) as a model
  • separate the catalyst powder from the solution. The absorbance of each sample during photocatalysis was measured at the maximum absorption peak of RhB. Characterization techniques and equipment The structure and phase purity of the nanomaterials synthesized here were characterized using powder X-ray
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • were washed with ethanol and water alternatively and calcined at a certain temperature for 2 h with a heating ramp of 5 °C·min−1 in a tube furnace in nitrogen atmosphere. The calcined samples were labeled as NiFe-PBA/PP-T. Physical characterization X-ray diffraction (XRD) patterns were recorded using a
  • PANalytical B.V. Empyean X-ray diffractometer with Cu Kα radiation (λ = 1.5406 Å). The surface morphology of the film catalyst was studied via scanning electron microscopy (SEM) on a Carl Zeiss Ultra Plus scanning electron microscope. Transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and
  • energy-dispersive X-ray spectroscopy (EDX) were carried out on a FEI Tecnia G2 F20 high-resolution transmission electron microscope operating at 200 kV. The surface composition of the samples was analyzed by X-ray photoelectron spectroscopy (XPS) on a ESCALAB 250Xi electron energy spectrometer using Al
PDF
Album
Full Research Paper
Published 02 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe3, as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO)2Cl2 compared
  • -dispersive X-ray spectroscopy (EDX); focused electron beam-induced deposition (FEBID); nanofabrication; platinum precursors; scanning electron microscopy (SEM); thermogravimetric analysis (TGA); Introduction Focused electron beam-induced deposition (FEBID) is a direct-write nanopatterning technique. FEBID
  • for complete precursor decomposition [14]. Electron-induced decomposition of adsorbed Pt(CO)2Cl2 has been previously studied using X-ray photoelectron spectroscopy (XPS) and mass spectrometry, and some deposits were produced in the ultrahigh vacuum (UHV) environment of an Auger electron spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • As2Se3:Snx glassy system [6] and X-ray photoelectron spectroscopy studies of AsxGexSe1−2x glasses [4], the introduction of elements such as Sn or Ge in glasses based on arsenic selenides, leads to the formation of new tetrahedral Sn(Se1/2)4 and quasi-octahedral SnSe structural units or of GeSe4
PDF
Album
Full Research Paper
Published 20 Nov 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • 3000HS). A volume-weighted Gaussian size distribution was fit to the autocorrelation functions to obtain the particle size and zeta potential values. The atomic fractions of C, O, and N in the different SWCNTs samples were determined by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific
  • ). Fourier-transform infrared (FTIR) spectra in the range from 500 to 4000 cm−1 were recorded with a FTIR spectrometer (Nicolet IS10). X-ray diffraction (XRD) analysis was conducted using a BRUKER D8 X-ray diffractometer in the 2θ range of 0–100° at a scanning rate of 5°·min−1. For atomic force microscopy
PDF
Album
Full Research Paper
Published 13 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • the basis of a comparative study of the role of material-related factors in the FIB-induced surface patterning. PMMA and PC polymers are especially interesting for many reasons: PMMA is widely used as a positive resist for X-ray, deep UV [8], electron and ion-beam lithography [9]. Structural
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • HAp nanoparticles were prepared using the water-in-oil (W/O) emulsion method. The characterization of the prepared HAp nanoparticles was carried out using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). TEM provided insight into the
  • distribution of HAp nanoparticles was determined using nanoparticle tracking analysis (NTA). The mean diameter was 159 ± 47 nm. (c) An X-ray diffractogram of the HAp nanoparticles in the range of 2θ = 20–60°. The spectra revealed the characteristic peaks of HAp according to ICDD no. 09-0432 (vertical lines
PDF
Album
Full Research Paper
Published 05 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • understood [24][25][26][27][28][29]. In particular, we found that hBN on Cu(111) forms a flat layer at a relatively large vertical distance from the Cu(111) top layer of 3.24 Å using an X-ray standing-waves analysis [30]. This large distance is, in principle, in agreement with the results reported
PDF
Album
Full Research Paper
Published 03 Nov 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • metal/silver oxide interface. Based on the scanning transmission electron microscopy analysis coupled with energy dispersive X-ray mapping a mechanism was proposed based on solid-state diffusion and the Kirkendall effect to explain the different steps occurring during the oxidation process. Keywords
  • formation of unique features, consisting of silver oxide nanoporous microspheres (Figure 1). Our observation was supported by various characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). We conducted our
  • top surface of the films (Figure 2a,b). Increasing the oxidation time to 15 min results in the formation of nanoporous microspheres at the surface (Figure 2c,d). By using elemental energy dispersive X-ray (EDS) analysis, these microspheres were confirmed to be constituted of silver oxide
PDF
Album
Full Research Paper
Published 22 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • ) mixed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant. The effect of the CTAB surfactant on the structural, morphological, optical, and elemental composition of Ag2S NPs was evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy
  • (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV–vis spectroscopy. The optical absorption decreased and the optical energy gap of α-Ag2S increased from 1.5 to 2 eV after the CTAB surfactant was added to the Tu solution. XRD studies revealed that the synthesized Ag2S NPs were polycrystalline
  • reference in one cuvette and the second cuvette was filled with thiourea solution and Ag2S nanoparticles. An X-ray diffractometer (XRD-6000, Shimadzu) was used to investigate the structural properties of Ag2S NPs deposited on the glass substrate. A Fourier-transform IR (FTIR) spectrophotometer (8400S
PDF
Album
Full Research Paper
Published 21 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • electronic properties of the material. Assemblies of organic molecules on surfaces have been studied experimentally, for example with X-ray diffraction [4][5], scanning tunneling microscopy [6][7][8] and atomic force microscopy (AFM) [9][10][11]. These methods have a considerable resolution in imaging planar
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • different NPs sizes (16, 29 and 45 nm), determined with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), were synthesized using a modified Benedict’s reagent. 1H nuclear magnetic resonance (NMR) results show that the hydrolytic degradation of MP leads to the formation of
  • through UV–vis absorption of 4-NPh. Likewise, it was shown that the surface basicity increases with decreasing nanoparticle size. The presence of CuCO3 on the surface of Cu2O, identified using X-ray photoelectron spectroscopy (XPS), passivates its surface and consequently diminishes the degradation of MP
  • with a double-way optic fiber coupled to a PC. The powder X-ray diffraction (XRD) patterns were collected with a Bruker D2 Phaser diffractometer equipped with a conventional X-ray tube (Cu Kα radiation, 30 kV, 10 mA) and the LYNXEYE one-dimensional detector. A primary divergence slit module width of 1
PDF
Album
Full Research Paper
Published 12 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • we imply that the surface is oxygen-terminated and shows a wurtzite-type of surface termination [19]. This has been confirmed by surface X-ray diffraction analysis of the 2BL film [21]. Although the 2BL film is structurally close to a c(10 × 2) surface structure it may be considered as a flat, quasi
PDF
Album
Full Research Paper
Published 05 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • /wavelength dispersive X-ray spectroscopy, as well as a best-case scenario for isotope measurements, since it has one of the largest relative mass differences between isotopes of any element. Alongside this, the practicalities of sample preparation and a discussion of further potential use cases of the HIM
PDF
Album
Full Research Paper
Published 02 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • until now because many of the standard techniques cannot easily distinguish between charged and neutral species. For reasonably large molecules with delocalized frontier orbitals, the integer charge is spread over many atoms and the resulting chemical shift will be too small to be seen with X-ray
PDF
Album
Full Research Paper
Published 01 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • for the combination of multiple antimicrobial agents in the same NP in order to improve their effects and overcome resistance mechanisms, such as the efflux pump systems. The absence of lipid peroxidation biomarkers and a small amount of metal ions detected by energy-dispersive X-ray spectroscopy in
PDF
Album
Review
Published 25 Sep 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • adsorption geometry of three-dimensional (3D) molecules on surfaces. While spectroscopic methods, such as X-ray standing waves [1] or photoelectron diffraction [2], can precisely determine the location of atomic species in ordered molecular systems on surfaces [3], scanning probe methods are commonly
PDF
Album
Full Research Paper
Published 22 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • the resulting Pt-NPs. Platinum loading and degree of oxidation The relative platinum loading and degree of oxidation were determined by X-ray photoelectron spectroscopy (XPS, see Experimental section). In Figure 5, an XPS survey scan (Figure 5a) and Pt4f elemental scans (Figure 5b,c) related to the
  • the commercial catalyst. Note, however, that this difference most likely results from the much lower mean particle diameter of 2.76 nm (measured by TEM, see Supporting Information File 1, Figure S5) compared to 4.5 nm (measured by X-ray diffraction) of the commercial catalyst [33]. Corresponding PSDs
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • ) on Ag(111) via X-ray standing waves (XSW), low-energy electron diffraction (LEED) as well as ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). XSW revealed that the adsorption distances of F4PEN in (sub)monolayers on Ag(111) were 3.00 Å for carbon atoms and 3.05 Å for fluorine atoms
  • . Keywords: decoupling; fluorination; metal–organic interfaces; organic pi-conjugated molecules; X-ray standing wave technique; Introduction The performance of organic (opto)electronic devices is strongly affected by the energy level alignment at the various interfaces in such devices [1][2][3
  • ][29]. PFP, in contrast, exhibits π-stacking on various substrates [18][56]. The X-ray scattering data shown in Supporting Information File 1, Figure S7 confirmed this ordering motif for the Ag(111) surface. The almost symmetric shape of the PFP HOMO in multilayers on Ag(111) resembled that of likewise
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • (National Institute of Mental Health, USA). The Brunauer–Emmett–Teller (BET) specific surface area and porosity of the CCGNFs were determined by using a surface area analyzer (Micromeritics, ASAP 2020, USA) at 77 K, taking into consideration the N2 adsorption and desorption isotherms. X-ray diffraction (XRD
PDF
Album
Full Research Paper
Published 27 Aug 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • energy was directed along the azimuth of the sapphire substrate. In order to check the crystal structure and the quality of the epitaxial growth, X-ray diffraction measurements were performed using a θ–2θ diffractometer. The diffractometer operates at the wavelength of λ = 1.54 Å and is equipped with a
  • , respectively. Reflectometry data analysis To study the quality of layers and interfaces in a layered structure reflectometry techniques (X-ray or neutron) can be used. Using these methods, a reflectivity curve R(Q) is measured as a function of momentum transfer Q = 4πsin(θ)/λ. In the kinematical approximation
  • corresponding layer, and bFe and bNb are the coherent scattering lengths of Fe and Nb. The X-ray SLDs of Fe and Nb differ only by a few percent, which makes the X-ray contrast very small even without interdiffusion. For neutrons, in contrast, the SLDs of Fe and Nb, ρFe = 8 × 10−4 nm−2 and ρNb = 3.9 × 10−4 nm−2
PDF
Album
Full Research Paper
Published 21 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • capture Cd(II) at the picomolar level and the verification of the experimental results using energy-dispersive X-ray spectroscopy (EDX). Fabrication and Calibration of the Piezoresistive Device Previously, a polysilicon-based piezoresistive sensor was fabricated using a standard microfabrication process
PDF
Album
Full Research Paper
Published 18 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • synthesized through this route. It should be noted that, due to the wide peaks in the Raman spectrum and to the presence of additional smaller peaks, there might be other iron oxides in the sample [50], although magnetite is prevalent. This is confirmed by energy-dispersive X-ray (EDX) spectrum taken from the
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • carbonization (HT carbons), and two samples were obtained from carbonized resorcinol–formaldehyde resins (RF carbons). The electrochemical sodium storage characteristics of the RF carbons were previously reported [28][29]. Characterization of hard carbons The X-ray diffraction (XRD) patterns consistently point
  • carbonized at 1000 or 1600 °C for 2 h in a stream of argon gas (1 L min−1). The carbon samples derived from RF gels (RF carbons) were labeled with the carbonization temperature, namely RF-1000 and RF-1600. Characterization Powder X-ray diffraction (XRD) measurements and Raman spectroscopy were employed to
  • confirm that the samples had an amorphous carbon structure, using an X-ray diffractometer (X'Pert Pro, PANalytical, Netherlands, using Cu Kα radiation with a generator voltage of 45 kV and a tube current of 40 mA) and a Raman spectrometer (Jubin-Yvon iHR550, HORIBA, Japan, equipped with a Laser Quantum
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • mixture. All materials including BTO, BTO-PTh, and PTh are characterized using Fourier-transform infrared spectroscopy (Nicolet 520 FTIR spectrophotometer) and X-ray diffraction (STOE STADI P X-ray diffractometer). The morphology of BTO and BTO-PTh nanoparticles is studied using scanning electron
  • , respectively, which is attributed to the interactions between β-hydrogens of PTh and oxygen atoms on the BTO surface. X-ray diffraction patterns of BTO, PTh, and core–shell BTO-PTh nanoparticles are presented in Figure 3. Pristine PTh is amorphous in nature and shows a low-intensity broad peak at around 23
PDF
Album
Full Research Paper
Published 10 Aug 2020
Other Beilstein-Institut Open Science Activities