Search results

Search for "ZnO" in Full Text gives 237 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • , and CH3OH is one of the sustainable ways to address the issues of both global warming and the energy crisis [1][2][3][4][5][6]. So far, a variety of semiconductor photocatalysts, such as ZnO, TiO2, WO3, and CdS have been developed for the photoreduction of CO2 [7][8][9][10]. However, poor separation
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • University, Tietotie 3, 02150 Espoo, Finland 10.3762/bjnano.10.26 Abstract We report on the growth of ZnO nanocrystals having a hexagonal, prismatic shape, sized 700 nm × 600 nm, on bare indium tin oxide (ITO) substrates. The growth is induced by a low ion flux and involves a low-temperature
  • electrodeposition technique. Further, vertically aligned periodic nanocrystal (NC) growth is engineered at predefined positions on polymer-coated ITO substrates patterned with ordered pores. The vertical alignment of ZnO NCs along the c-axis is achieved via ion-by-ion nucleation-controlled growth for patterned
  • nanoscale optoelectronics [1][2][3][4]. ZnO is an important direct band gap (≈3.3 eV), nontoxic, metal oxide semiconductor, which can readily be used for optoelectronic applications. The properties of ZnO can be tailored by changing the morphology of the structures. Thus, fabrication of ZnO having different
PDF
Album
Full Research Paper
Published 24 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • two-step process on ZnO nanorod/TiO2 substrates [7]. In this study, we applied this two-step process, i.e., depositing amorphous Sb2S3 layers on planar substrates, followed by post-deposition crystallization. The aim of this study was to produce crystalline, continuous, Sb2S3 optical coatings with
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • of 31.25, 36.82°, 55.62°, 59.32° and 65.19°), which can be assigned to a new Al2ZnO4-phase (ghn, gahnite-type JCPDF 98-007-5098). Interestingly, the new materials prepared in this study exhibit no ZnO phase, as seen from the FTIR or XRD spectra, unlike in our previous studies [21]. This behavior is
  • because a standard solution of NaOH used in the previous preparation of the materials (which, when reacted with ZnCl2, will yield ZnO) was omitted in the preparation of the nanocomposites in this study. Nuclear magnetic resonance spectroscopy analysis To further evaluate the composition and structure of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • atom %) made by spray pyrolysis showing high transparency and bandgap values between 3.86 and 4.45 eV have also been reported [32]. Other researchers have used radio frequency magnetron sputtering of mixed 30 wt % ZnO and 70 wt % SnO2 targets to obtain similar FZTO films, yet their reported different
  • samples. For instance, regardless of the Zn doping degree, the presence of the main ZnO peak (101) at 2θ ≈ 36.5° was not distinguished. This result highlighted that at this Zn doping level there is no segregation process toward some Zn-rich crystalline phases such as Zn2SnO4. It is worth to noting that
  • precursors to oxides (SnO2 and ZnO, in fact Zn-doped SnO2), CO2 and H2O in the laser pyrolysis reaction zone. Due to the much higher reactivity of metals, the metal oxides are formed with priority, and the unoxidized alkyl radicals from the precursors will undergo a complex process involving reactions such
PDF
Album
Full Research Paper
Published 02 Jan 2019

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • state of the art. The electric back contact (molybdenum) covered with the highly-efficient light-absorber (CIGSe) on top is deposited on a carrier material (glass). A buffer layer (CdS), a window layer consisting of an intrinsic ZnO layer (ZnO) and an aluminum-doped ZnO layer (Al:ZnO) as transparent
  • . A process to realize such a system is illustrated in Figure 12. Before buffer layers (CdS, ZnO) and front contact (Al:ZnO) can be deposited, the electric insulation between back and front contact in-between the microabsorbers must be ensured. Due to its high (thermal) stability, ease of use and low
  • etching (22 min at 250 W in Ar atmosphere), for example, is sufficient to uncover the islands while keeping the molybdenum substrate isolated (Figure 12c). Finally, the buffer layers (CdS, ZnO) and the front contact (Al:ZnO) were deposited (Figure 12d). CdS was applied by a wet-chemical bath deposition
PDF
Album
Review
Published 12 Dec 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • achieved at all [19][20]. Metal-oxide semiconductors (MOS), including tin oxide (SnO2), titanium dioxide (TiO2), zinc oxide (ZnO), copper oxide (CuO), tungsten oxide (WO3), indium oxide (In2O3), ferric oxide (Fe2O3) and cobalt oxide (Co3O4) are important materials for gas sensors [21][22][23][24][25][26
  • through the addition of GO. The ZnO–rGO sensor reported by Zou et al. [36] showed a sensitivity of 96.4 to 50 ppm ethanol at 260 °C with short response and recovery times. Extensive research on graphene/metal-oxide sensors has been carried out over the recent years [37][38][39][40][41][42][43]. It appears
  • sensors based on rGO/metal oxides, which exhibit enhanced sensing performance mainly due to the formation of heterojunctions. Tai et al. [46] deposited ZnO nanoparticles and GO thin films on gold interdigital electrodes (IDEs) through a simple spray process and thermally reduced the deposits to ZnO–rGO
PDF
Album
Review
Published 09 Nov 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • , Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden 10.3762/bjnano.9.255 Abstract Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass
  • substrates. The ZnO NRs exhibit a broadband (1–2 µm) near-IR absorption ascribed to the singly charged zinc vacancy VZn−1. The saturable absorption of the ZnO NRs is studied at ≈1 µm under picosecond excitation, revealing a low saturation intensity, ≈10 kW/cm2, and high fraction of the saturable losses. The
  • ZnO NRs are applied as saturable absorbers in diode-pumped Yb (≈1.03 µm) and Tm (≈1.94 µm) lasers generating nanosecond pulses. The ZnO NRs grown on various optical surfaces are promising broadband saturable absorbers for nanosecond near-IR lasers in bulk and waveguide geometries. Keywords: oriented
PDF
Album
Full Research Paper
Published 23 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • developed in this work seems to be a good option to be used as a back contact in thin-film solar cells. In order to prove this a CZTS thin-film solar cell has been made by stacking the ITO/ZnO/CdS/Cu2ZnSnS4 on top of Mo/Cr bilayer back contact on the SLG substrate. A 1.5 μm thick CZTS was deposited through
  • a two-step process of sulfurization of stacked metallic layers of Cu/Sn/Zn. Then a 60 nm CdS buffer layer was deposited using chemical bath deposition (CBD). This was followed by sputtering of a 30 nm ZnO layer and a 350 nm ITO layer as transparent conductive oxide (TCO) layers. As the last step, a
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • nanostructures in the form of thin film, membrane, fibre and hybrid materials under UV and visible light irradiation. Nanocellulose–metal oxide (TiO2, ZnO, graphene oxide, and Fe2O3) composites have been used as photocatalysts to improve the degradation rate of organic pollutants as compared to individual
PDF
Album
Review
Published 19 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • Marina Krasovska Vjaceslavs Gerbreders Irena Mihailova Andrejs Ogurcovs Eriks Sledevskis Andrejs Gerbreders Pavels Sarajevs G. Liberts' Innovative Microscopy Centre, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils LV-5401, Latvia 10.3762/bjnano.9.227 Abstract ZnO
  • , nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes
  • , using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. It was found that the sensitivity of the resulting electrochemical sensors depends on the morphology of the ZnO nanostructures: the best results were achieved in the case of porous nanostructures (nanotubes and
PDF
Album
Full Research Paper
Published 11 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • ] Ag2CO3/AgBr/ZnO [42], and Ag/Ag2CO3/Bi2MoO6 [32]. The band structure of Ag2CO3 matches well with that of Bi2MoO6 [32]. Moreover, morphology modulation is another significant way to enhance photocatalytic activity. Three-dimensional nanostructures endow materials with unique physicochemical properties
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • electrospun nanofibers as the sensing layer. These materials include: metal oxide (MOx) semiconductors (e.g., SnO2, TiO2, SiO2) [83][84], doped MOx semiconductors [4][5][6][7][8][9][10][11], composite materials made of MOx semiconducting materials (e.g., ZnO-In2O3) [86], conducting polymer-based gas sensors
  • ], Co3O4 [113][114], iron oxide (Fe2O3) [115][116], tin dioxide (SnO2) [76][117][118][119][120][121][122][123], zinc oxide (ZnO) [124][125][126][127][128][129][130], and indium oxide (In2O3) [78][80][131][132][133][134][135][136][137][138]. Table S2 in Supporting Information File 1 summarizes the sensing
  • , the In2O3 and ZnO NTs with smaller diameter (≈50–100 nm) and thinner walls (≈10 nm) exhibited enhanced response compared with larger diameter NTs (≈500 nm) toward formaldehyde, CO and NO2 [126][127][128][133][143]. WO3 NTs with an average diameter of 200 nm showed a response of 45.2 toward 100 ppm of
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • effect on the performance of a ZnO nanogenerator was investigated in detail and it was elucidated that carrier motion/redistribution occurs in the ZnO nanowire (ZNW) cross section while there is no carrier motion in the axial direction. At the same time, we noted that the amplitude of boundary electric
  • power was analyzed in detail. The electrode size for the optimal performance of a ZnO nanowire generator was proposed. This analysis that couples electromechanical fields and carrier concentration as a whole has some referential significance to piezotronics. Keywords: carrier drift; crystallogrpahic c
  • -axis; piezoelectric potential; semiconductor; zinc oxide (ZnO); Introduction An acoustic wave propagating in piezoelectric semiconductors usually stimulates electric fields that bring charge carriers into motion, and conversely, the carrier motion will produce an opposite effect on the electric fields
PDF
Album
Full Research Paper
Published 04 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • Zn mainly exists in form of ZnO, which is consistent with the results of Zhang [29] and Wang [30]. Figure 4c and Figure 4g show the high-resolution O 1s spectra. As it can be seen, the asymmetrical peak shape indicates the chemical state of O in samples is more than one state, which is deconvoluted
  • the oxygen atoms of ZnO. Figure 5 demonstrates the water contact angles (CAs) of the different treated samples. As-grown TiO2 nanotube arrays presents total hydrophilicity with a water CA of 30° (Figure 5a) without any surficial alteration [2][3]. Besides, TNTs modified with Ag (Figure 5b) and ZnO-Ag
  • release property. Conclusion AgNPs have been successfully decorated on the surface of TNTs (Ag-TNTs) to improve the photocatalysis properties of the TNTs under visible-light irradiation. Then, a NDM hydrophobic layer and ZnO were effectively loaded on the Ag-TNTs. Compared with samples without the
PDF
Album
Full Research Paper
Published 14 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • displays, X-ray sources and cold-cathode electron sources [2]. 1D and 2D materials such as carbon nanotubes [3], ZnO nanorods [1], LaB6 nanowires [2], SnS2 nanosheets (NSs) [4], vertically aligned graphene [5], WS2 nanotubes [6], MoSe2 nanosheets [7], and MoS2 NSs [8][9][10] are potential field-emitter
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • carbon nanotubes coated with zinc oxide nanoparticles (ZnO@NCNT) were prepared via a sol–gel route as sulfur encapsulator for lithium/sulfur (Li/S) batteries. The electrochemical properties of the S/ZnO@NCNT composite cathode were evaluated in Li/S batteries. It delivered an initial capacity of 1032
  • bonds in the composite. This indicates that an enhanced cycling and rate capability of the S/ZnO@NCNT composite could be ascribed to advantages of the ZnO@NCNT matrix. In the composite, the active ZnO-rich surfaces offer a high sulfur-bonding capability and the NCNT core acts as a conductive framework
  • providing pathways for ion and electron transport. The as-prepared S/ZnO@NCNT composite is a promising cathode material for Li/S batteries. Keywords: batteries; nanocomposites; sol–gel processes; sulfur; zinc oxide (ZnO); Introduction Due to its high theoretical specific capacity of 1672 mAh·g−1 and
PDF
Album
Full Research Paper
Published 06 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • conditions, low cost, high efficiency and reusability. It uses renewable and pollution-free solar energy and produces minimal secondary waste without using toxic chemicals that follow the rules of green chemistry [59][60][61]. Various semiconductor photocatalysts such as CdS, ZnO, WO3, SnO2, and TiO2 have
  • Transition metal oxides such as ZnO have been combined with TiO2 to form composite photocatalysts, which are used efficiently for photocatalytic reduction of Cr(VI). ZnO has been recognized as a potential photocatalyst for extensive environmental applications because of its availability and low cost. It also
  • possesses intriguing optical and electric properties [145][146][147][148]. Studies involving ZnO-mediated photoreduction of Cr(VI) have been carried out under illumination with UV radiation [149]. Since the conduction band edge potential for TiO2 is more positive than that of ZnO (Figure 2), the combination
PDF
Album
Review
Published 16 May 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • types of single-photon emitters that include molecules [3], trapped atoms [4], quantum dots [5] and defects in diamond [6]. More recently point defects of wide-bandgap semiconductors, such as zinc oxide (ZnO) [7][8][9] and silicon carbide [10], were shown to exhibit room-temperature single-photon
  • emission. ZnO is the only metal oxide reported to host single-photon emitting defects at room temperature and was recently shown to exhibit stable fluorescence when uptaken into skin cells, making it a viable biomarker [11]. Titanium dioxide (TiO2) is a well-studied wide-bandgap semiconductor, its
  • of a sample is obtained by large spot size excitations, e.g., Amekura et al. investigated the PL from ZnO nanoparticles with a spot size of approximately 4 mm [55][56]. This spot size constitutes an ensemble measurement where PL from many defects is sampled. Therefore, single defects and their
PDF
Album
Full Research Paper
Published 04 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • production methods for these carbon-based materials fabrication (except carbon black) [8]. (ii) Inorganic-based nanomaterials: These NMs include metal and metal oxide NPs and NSMs. These NMs can be synthesized into metals such as Au or Ag NPs, metal oxides such as TiO2 and ZnO NPs, and semiconductors such as
PDF
Album
Review
Published 03 Apr 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • , with Raman spectra of the interface proving the adsorption of the intact β-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the β-CD/ZnO interface, showing a large energy level shift at the
  • interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows
  • reactions, forming precipitates such as hydrated zinc oxide [15]. ZnO is naturally an n-type semiconductor with a band gap of 3.4 eV [20]. Oxides formed in an aerated corrosion process are typically defect-rich oxides [21], especially in the presence of Cl− [15]. Consequently, the products remain initially
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • organic cells. Because of these toxic properties the films and nanostructures of such metals or metal compounds are widely used as antibacterial and antimicrobial agents. Among them are Ag, Cu, Au, CuO, ZnO, Fe3O4, Al2O3 and TiO2, to name just a few [1][2][3]. They all exhibit bactericidal properties
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • few times more sensitive towards antifungal agents than other fungi. Auyeung et al. found that only metallic and ZnO NPs showed a potent antimould activity against A. niger and P. chrysogenum [71]. Despite the low antifungal activity of silver-modified titania, the inhibition zones around paper disks
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • , Thailand, Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand 10.3762/bjnano.9.72 Abstract In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of
  • Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites
  • exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • , 790000, Ba Ria-Vung Tau, Vietnam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, 100000, Hanoi, Vietnam 10.3762/bjnano.9.70 Abstract Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by
  • of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the
  • material for the design of efficient catalytic devices. The NO2 sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018
Other Beilstein-Institut Open Science Activities