Search results

Search for "accelerating voltage" in Full Text gives 146 result(s) in Beilstein Journal of Nanotechnology.

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

  • Jiajun Wang,
  • Xia Liu,
  • Gesmi Milcovich,
  • Tzu-Yu Chen,
  • Edel Durack,
  • Sarah Mallen,
  • Yongming Ruan,
  • Xuexiang Weng and
  • Sarah P. Hudson

Beilstein J. Nanotechnol. 2018, 9, 137–145, doi:10.3762/bjnano.9.16

Graphical Abstract
  • different additives obtained and labeled as Sa, Sb, Sc, Sd, and Se, respectively. Carbon nanodot characterization The product morphology was assessed by TEM and HRTEM, which was performed on a JEOL-2100F instrument with an accelerating voltage of 200 kV. The XRD patterns of Sa, Sb, and Se were recorded on a
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2018

Nematic liquid crystal alignment on subwavelength metal gratings

  • Irina V. Kasyanova,
  • Artur R. Geivandov,
  • Vladimir V. Artemov,
  • Maxim V. Gorkunov and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 42–47, doi:10.3762/bjnano.9.6

Graphical Abstract
  • gratings (Figure 1) are produced by ion-beam milling of the films using an FEI Scios dual beam electron-ion microscope (accelerating voltage 30 kV, ion beam current 0.1–0.3 nA). We have produced a series of gratings on the same substrate in order to be able to observe the influence on LC alignment of such
PDF
Album
Full Research Paper
Published 04 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • microscope (FE-SEM, JSM-6700F), a transmission electron microscope (TEM, JEM 100-CXII) with an accelerating voltage of 80 kV, and a high-resolution TEM (HRTEM, GEOL-2010) with an accelerating voltage of 200 kV. Also, powder X-ray diffraction (XRD) patterns were collected on an X-ray diffractometer (Rigaku D
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • accelerating voltage, sample height, and vapor pressure were adjusted so that patterns could be discerned. The level of contrast in VP-SEM also depends on the nature of the alkanethiol molecules and SAM disorder (e.g., the orientation and conformation of the molecules in the SAM) [5]. The Au–mercaptoundecanol
  • microscopy was performed using a JEOL JSM-6700F scanning electron microscope (JEOL, Inc., Tokyo, Japan) with a 750 V DC detector bias and 5 kV accelerating voltage. Field-emission gun variable pressure electron microscopy of Au on PDMS The scanning electron micrographs of Au–alkanethiolate monolayers on flat
  • PDMS were imaged with a low-vacuum detector in a Nova NanoSEM 230 microscope (FEI, Czech Republic) operating at an accelerating voltage of 5 kV. The samples were affixed to the SEM stub and grounded by conductive carbon and copper tape. Variable pressure SEM (VP-SEM) was performed under 50 Pa of water
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • accelerating voltage in keV and ρ is the density of the detected sample. Considering the thickness of Fe nanostructure is approximately ≈30 nm, one can expect ≈1.6% Fe signal, which is below the detection limit of the method [45]. In additional experiments on other samples, the fabrication of CNT forests and
  • S-4700 Type II cold field emission SEM instrument operated at 10–15 kV accelerating voltage with an integrated Röntec QX2 EDX detector. (a) Scheme of the electron beam induced deposition (EBID) process with Fe(CO)5 as precursor molecule, producing a point matrix of Fe deposits. (b) SEM micrograph of
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • reference material causing lattice contraction or expansion and strain [97][98][99][100][101]. The HR-TEM imaging was performed on a FEI Tecnai G2 F20 electron microscopy operated at 200kV accelerating voltage [102]. Digital images were recorded by a Gatan UltraScan 1000P detector. Samples were prepared
  • irradiated for 10 min (Co) or 15 min (Fe, Pr, Eu) at a power of 50 W to a temperature of 220 °C. Examples of selected area electron diffraction (SAED) patterns (Figures S4 and S6 in Supporting Information File 1) have been recorded with an FEI Titan 80-300 TEM [103], operated at 300 kV accelerating voltage
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology

  • Clelia Galati,
  • Natalia Spinella,
  • Lucio Renna,
  • Danilo Milardi,
  • Francesco Attanasio,
  • Michele Francesco Maria Sciacca and
  • Corrado Bongiorno

Beilstein J. Nanotechnol. 2017, 8, 2446–2453, doi:10.3762/bjnano.8.243

Graphical Abstract
  • operating at 200 kV accelerating voltage. Preparation of peptide microarray KLVFF and Semax peptides were dissolved in phosphate buffer at a concentration of 1 mg/mL and aliquots were stored at −80 °C until use. Cy3-Aβ40 conjugate was dissolved in a saline phosphate buffer containing 10 vol % of DMSO (0.01
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • typical settings of an accelerating voltage and a bias of 2.00 kV and 200 V, respectively. Quartz crystal microbalance apparatus QCM data were collected using a QCM100 (Stanford Research Systems, Sunnyvale, CA, USA) system. The system includes a controller, oscillator electronics and a Teflon holder and a
PDF
Album
Full Research Paper
Published 29 Sep 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • samples was analyzed using a JEOL 6340F field emission scanning electron microscope (FESEM) in secondary electron imaging mode. The accelerating voltage was set to 5 kV. The electrodes were prepared by mixing 40% of as-synthesized active iron oxide powder with 40% of conductive additives (Super P Li
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • aqueous solution. TEM observations were performed on a Philips CM 120 electron microscope at an accelerating voltage of 80 kV. The sample for FESEM observation was prepared by placing a drop of properly diluted nanoparticle dispersion on a clean glass sheet, and was allowed to dry in the air. FESEM
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • in a transmission electron microscope. The analysis was performed at an accelerating voltage of 100 kV in TEM mode. Determination of particle diameter by SEM Additional measurements of the particle diameter were carried out by using a field-emission high-resolution scanning electron microscope (SEM
  • ) by Merlin Carl Zeiss. Observations of the morphology of the surface were made by applying an accelerating voltage of incident electrons at 5 kV and a current probe at 300 pA in order to minimize modifications to sample. The sample preparation was as follows: samples of compounds 8–11 (1 × 10−4 М
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • products was investigated using a transmission electron microscope (TEM, model MORGAGNI 268) operated at an accelerating voltage of 72 keV. The average size of nanoparticles was estimated from at least 150 species observed in the TEM images. High-resolution transmission electron microscopy (HRTEM) studies
  • of as-synthesized products were performed using a LIBRA 200 FE at an accelerating voltage of 200 keV. X-ray powder diffraction experiments were performed on a D8 diffractometer (Bruker AXS, Germany), equipped with a Göbel mirror as a primary beam monochromator for Cu Kα radiation. Upgraded vacuum
PDF
Album
Full Research Paper
Published 22 Aug 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • (FE-SEM) and TEM. FE-SEM measurements were carried out using a JEOL JSM 6330F instrument operating at an accelerating voltage of 15 kV. TEM measurements were carried out using a JEOL JEM-2000 FX electron microscope operating at an accelerating voltage of 200 kV. The samples were prepared by placing
PDF
Album
Full Research Paper
Published 14 Aug 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • . To understand this widening mechanisms, the effects of accelerating voltage, particle size and substrate material are investigated by means of both experiments and simulation. It is demonstrated that the fixing area is greatly affected by the electrons back-scattered by the substrate. The back
  • -scattering leads to an increase in line width and thus reduces the resolution of this patterning technique. Keywords: accelerating voltage; electron beam; gold; Monte Carlo simulation; nanoparticle array; Introduction Techniques to fabricate assemblies or arrays of nanostructures on a desired area have
  • the particle and the substrate fixes the particles. However, in this original technique, the area of fixed gold nanoparticles was wider than the electron-probe size of a few nanometers [8]. To understand the mechanisms of this widening, the effects of accelerating voltage, particle size and substrate
PDF
Album
Full Research Paper
Published 26 Jul 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • . Prior to the FE-SEM examination, all the specimens were sputter-coated with gold to avoid charge accumulations. Transmission electron microscopy was conducted on a JEOL JEM-2100 transmission electron microscopy unit at an accelerating voltage of 120 kV. The specific surface area and pore structure of
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • ) preparation and transmission electron microscopy (TEM) Secondary electron images were collected using an Everhart–Thornley-detector mounted on a FEI Quanta 3D FEG applying electron beam settings of 15 kV accelerating voltage. In the same system cross-sectional electron transparent foils of the MoS2 films on
  • the SiO2/Si support were fabricated using focussed ion beam (FIB) sputtering at IB settings of 30 kV accelerating voltage and successively decreasing IB currents from 65 nA to 50 pA. The 90–120 nm thick sample foils were subsequently checked for film thickness accuracy determination in a Philips CM200
PDF
Album
Full Research Paper
Published 22 May 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • spectroscopy (EELS) were performed using a Nion UltraSTEM 100 which is equipped with aberration correction of the probe forming lens. Beam-induced damage and contamination were minimized by using an accelerating voltage of 60 kV and a 40 pA beam current. High angle annular dark field (HAADF) and bright field
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • reduction tube at 850 °C. Sulfanilamide C6H8N2O2S was used as CHNS standard. For SEM studies with a JSM-6060LA analytical scanning electron microscope (Jeol, Tokyo, Japan) using secondary electrons at an accelerating voltage of 30 kV, the samples were fixed on the objective tables. To prevent the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Nanoscale isoindigo-carriers: self-assembly and tunable properties

  • Tatiana N. Pashirova,
  • Andrei V. Bogdanov,
  • Lenar I. Musin,
  • Julia K. Voronina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Vladimir F. Mironov,
  • Lucia Ya. Zakharova,
  • Shamil K. Latypov and
  • Oleg G. Sinyashin

Beilstein J. Nanotechnol. 2017, 8, 313–324, doi:10.3762/bjnano.8.34

Graphical Abstract
  • ) Transmission electron microscopy (TEM) images were obtained using a microscope Hitachi HT7700, Japan. The images were acquired at an accelerating voltage of 110 kV. Samples were dispersed on 300 mesh copper grids with continuous carbon-formvar support films. In vitro stability of SIPs The SIP sample (5 mL) was
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • vacuum chamber at a temperature of 560–580 °C allowed us to get rid of a protective oxide layer and the impurities accumulated in it. The accelerating voltage determining the ion energy varied in the range from 100 to 500 V. The energy dependence of the sputtering yields was measured with a step of 50 eV
PDF
Album
Full Research Paper
Published 03 Jan 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • using the STAR software from Mettler Toledo. The transmission electron microscopy (TEM) images were taken using a dedicated HITACHI HT7700 microscope operating in high contrast mode at 100 kV accelerating voltage. The samples were prepared by placing small droplets of the diluted dispersion (≈1 g/L) of
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • 200 MC, Carl Zeiss) at an accelerating voltage of 200 kV and a magnification of 30,000–300,000×. The X-ray photoelectron spectra were acquired with a Kratos Ultra DLD spectrometer using a monochromatic Al Kα X-ray source that possesses an analysis area of 300 μm × 700 μm. The spectra were recorded in
PDF
Album
Full Research Paper
Published 09 Dec 2016

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • -probe X-ray microanalysis with a Tescan Vega TS5130 MM scanning electron microscope (SEM) equipped by energy dispersive X-ray spectrometer (Oxford Instruments). TEM studies were performed using JEM-4000FX microscope at an accelerating voltage of 400 kV. X-ray diffraction (XRD) was studied using a
PDF
Album
Review
Published 07 Dec 2016

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • accelerating voltage of 10 kV. The same SEM system was used for visualization of the morphology of the layers and of the cross-section of the solar cells at an electron beam accelerating voltage of 4 kV. Current–voltage scans of the solar cells were used to obtain the principal characteristics of the solar
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction

  • Silu Liu,
  • Xiaolong Ma,
  • Lingzhen Li,
  • Liwen Zhang,
  • Patrick W. Trimby,
  • Xiaozhou Liao,
  • Yusheng Li,
  • Yonghao Zhao and
  • Yuntian Zhu

Beilstein J. Nanotechnol. 2016, 7, 1501–1506, doi:10.3762/bjnano.7.143

Graphical Abstract
  • /C2H5OH/H2O. TKD characterization was conducted in a Zeiss Auriga SEM operating with a 30 kV accelerating voltage. The measurement step size was set to 6 nm for the microscopic observation, taken into consideration the heavily deformed state and other factors. All misindexed points and unindexed pixels in
PDF
Album
Full Research Paper
Published 24 Oct 2016
Other Beilstein-Institut Open Science Activities