Search results

Search for "applications" in Full Text gives 1693 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • has shown significant treatment efficacy for central nervous system (CNS) disorders including depression, schizophrenia, Alzheimer’s disease, and post-traumatic stress disorder. The physicochemical properties of DCS, however, limit the options of formulation and medicinal applications of DCS, and
  • DCS nanocrystals will not have improved water solubility in comparison with that of commercial DCS. Accordingly, we focused on the other two important characteristics of nanocrystals: size effect and dissolution rate, and then investigated the pharmaceutical applications of DCS nanocrystals through in
PDF
Album
Full Research Paper
Published 25 Apr 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • applications in modern superconducting spintronics [18][19][20][21][22]. In 1997, Beasley and coworkers proposed a theoretical F1/F2/S model of the SSV structure [1]. Another F1/S/F2 model was developed a little later in 1999 by Tagirov [2] and Buzdin and coworkers [3]. In these structures, F1 and F2 are
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • applications this is highly undesirable, especially when neighboring structures are interconnected. A new technique combining FEBID and focused electron beam-induced etching (FEBIE) has been developed to fabricate structures with vertical sidewalls. The sidewalls of carbon FEBID structures have been modified
  • using focused ion beam (FIB) milling and shown as an electron tilt image in Figure 1b, clearly demonstrates the Gaussian shape. For lithography applications, however, both the long tails and the Gaussian cross section are highly undesirable. The tails may form interconnects to neighboring lines, and the
  • which the sidewall angle becomes 90°. The method described here to make vertical sidewalls of FEBID deposits has the potential to make FEBIP a more competitive technology for lithography applications. Experimental The FEBID and FEBIE experiments were carried out in a Thermo Fisher Scientific Helios 650
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • ; silver nanowires; Introduction Metal nanowires (NWs) are promising key elements in a wide range of applications, including solar cells [1], smart windows [2], flexible sensors [3], touch screens [4], biocompatible polymer binders [5], temperature sensing [6], medical materials [7], and key elements of
  • NW networks is in highly flexible transparent film heaters [15]. In recent years, Ag NWs have garnered attention as a key element in neuromorphic computing devices [16]. In the context of the applications mentioned, Ag NWs are subjected to elevated temperatures caused by Joule heating [17]. Moreover
  • ][23]. This phenomenon is closely related to the variation of surface energy with size [24]. For instance, the melting temperature can decrease by several hundred degrees for structures smaller than 10 nm [25]. In practical applications, the diameters of Ag NWs are typically significantly larger
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • biosensors are commonly made of LSPR materials [17]. With the development of synthesis techniques, numerous nanostructures of noble metals have been extensively studied to improve the intrinsic parameters of sensors. Silver nanoparticles (Ag NPs) exhibit great performance in sensing applications owing to the
  • regarding the detection of NFT and SDZ, we demonstrate application aspects of our product, showing the great potential of DESs in sensing and biomedical applications. Results and Discussion Formation of Ag NPs-DES We have developed new and simple strategy to fabricate Ag NPs-DES in which ascorbic acid was
  • located at 390 nm, which is suitable for SERS applications with 532 nm laser excitation. Besides, the shape of the UV–vis spectrum is in accordance with Mie scattering theory calculations, as reported in [39], proving the existence of Ag NPs in the solution. Moreover, the XRD pattern of the thin film
PDF
Album
Full Research Paper
Published 16 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • , during its epitaxial growth in surface science experiments or its fabrication for applications, defects, that is, deviations from the ideal 2D lattice, inevitably occur. Examples for defects are vacancies, interstitial atoms, grain boundaries, stacking faults or wrinkles [5][6][7][8][9][10][11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam Vietnam National University Ho Chi Minh City, Vietnam BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea 10.3762/bjnano.15.36 Abstract
  • reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant
  • action, and expand their applications, especially in medicine and healthcare. For example, the question of why nanoparticles with a majority of Ce3+ on the surface have stronger antioxidant activity than those with Ce4+ has recently been answered by Dutta and co-workers [11]. Ce3+ nanoparticles have a
PDF
Album
Review
Published 12 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • sensors are an important factor in moving from rigid to flexible electronics. Graphene, because of its interesting inherent properties, has found its way in many applications [1][2][3]. In particular, it is a promising alternative material as a transparent and conductive coating for future flexible
PDF
Album
Full Research Paper
Published 08 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • electron microscopy; Introduction Scientific research varying from electronics to photonics, homeland security, high-resolution parallel patterning of magnetic media, biotechnology, and medicine are based upon nanotechnology. These applications require nanopatterning techniques to fabricate devices or
  • structures. Although these structures may not be visible to the naked eye, they certainly have a visible impact on the mentioned applications. Nanopatterning is a very delicate procedure that is only possible with special techniques such as ion beam sputtering (IBS), with which one can achieve nanostructures
  • experimental results [11][12]. Thanks to these efforts, desired nanopattern features with a large degree of control may be achieved, according to specific applications, on a wide variety of targets. Facsko et al. [13] have shown controlled growth of nanodots on GaSb, and their probable use was demonstrated via
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • ][13] and ferromagnetic resonance modes [14][15]. Meanwhile it has been shown that it might also lead to sequential flipping of different free layers, which, on the one hand, increases the complexity of the STT effects [16] and, on the other hand, expands its applications [5]. In this work, we present
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • sputtering for optoelectronic applications. A glancing angle of 87° is employed to grow films of different thicknesses, which are then exposed to post-growth annealing. Detailed local probe analyses in terms of morphology and work function of WOx films are carried out to investigate thickness-dependent
  • ideal candidate for UV photodetector applications [3]. Because of its octahedral lattice symmetry and partially filled d bands, WOx is also highly attractive as an electrochromic material for developing modern-day smart windows and display devices [4][5][6][7]. Exhibiting various stoichiometric and sub
  • on the variation in work function with thickness for GLAD-grown WOx films in this study is valuable towards potential device applications, where work function optimization among consecutive layers is imperative. Moreover, the adopted rf sputtering technique in the present work ensures reduced surface
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • , feed, pharmaceutical and cosmetic applications. The PSDs measured by the three titanium dioxide manufacturers based on electron micrographs are in excellent agreement with one another but differ significantly from those published elsewhere. Importantly, in some cases, the PSDs result in a different
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • clusters have been reported in the literature. Our G0W0 calculations will provide a benchmark to help accelerate the research on clusters and creating materials with high stability that can be used for advanced energy storage applications [17][18][19]. In this work, we have employed the generalized
PDF
Album
Full Research Paper
Published 15 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • ; Introduction The advent of two-dimensional (2D) layered materials beyond graphene has initiated a new field of research [1][2][3]. In the family of 2D layered structures, transition metal dichalcogenides (TMDs) have attracted considerable attention from academia and regarding potential applications [4][5][6][7
  • X–M–X or MX2 triatomic layer, where X is a chalcogen atom (e.g., sulfur, selenium, or tellurium) and M is a transition metal atom (e.g., molybdenum or tungsten) [10]. Among the layered TMD materials, molybdenum disulfide, MoS2, is of particular interest in optoelectronic applications because of its
  • transition to a direct bandgap semiconductor with very high photoluminescence quantum yield when thinned down to a monolayer [13][14][15][16][17]. Its unique electronic and optical properties could provide an edge in many future applications. The multilayers MoS2 structures are of the most common 2Hc type
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • ; ultrahigh stretchability; Introduction In recent years, there has been significant advancement in the field of stretchable and soft electronic devices due to the increasing demand for their applications in various domains [1][2]. These applications include the detection of human motion [3][4][5
  • demands of these applications [20]. Among various factors considered, the parameters of sensitivity and stretchability hold significant importance in determining the suitability of a strain sensor for practical applications. In recent years, scholars have acknowledged and addressed the aforementioned
  • observed in crack-based strain sensors [37]. It is evident that the helical strain sensor exhibits exceptional stability and recoverability, thereby demonstrating excellent reproducibility and durability in practical applications. In Figure 2h, the helical sensor demonstrates exceptional strain-sensing
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ’ magnetization cycle, as Bloch and Neel theorized [11][13]. Superparamagnetic iron oxide nanoparticles for drug delivery, diagnosis, and cancer therapy have gained wider acceptance in biomedical applications [14]. They have received notable attention in clinical applications such as early disease diagnosis (e.g
  • of passive targeting in magnetic fields for photothermal cancer therapy, with PDA holds great promise for future applications. Therefore, surface modification with PDA is recognized as a favorable alternative for enhancing the biocompatibility of non-biodegradable substances. A study focused on
  • noteworthy potential in photothermal therapy, magnetic targeting, MRI imaging, and chemotherapy. This versatile approach represents a significant advancement in cancer treatment modalities, offering a promising avenue for future research and clinical applications. Our work provides a nanomaterial endowed
PDF
Album
Full Research Paper
Published 28 Feb 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • larger than the geometric (electromagnetic) inductance in thin films and nanowires made of amorphous superconductors [16]. It is, therefore, useful in applications that require compact microwave resonators with low loss [17], including microwave filters [18] and resonant radiation detectors [19]. Large
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • surface topography [7]. A sharper needle tip leads to more accurate measurements [8]. During the scanning process, tip and sample come into mutual contact, causing wear on the tip [9]. Tip wear or damage in practical applications can have severe consequences, including reduced image quality and erroneous
  • evaluation of the effects that different scanning parameters have on tip wear. This detailed assessment is instrumental for optimizing scanning conditions, ultimately enhancing the longevity and performance of the AFM tip in various applications. Effect of scanning parameters on tip wear The wear test
PDF
Album
Full Research Paper
Published 14 Feb 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • and product quality. Aluminum is widely used in food packaging and food processing applications, including dairy products. However, the interaction between aluminum and milk content requires further investigation to understand its implications. In this work, we present the results of multiscale
  • corona; Introduction The interface between biological systems and engineered materials has gained significant attention in recent years because of its wide range of applications, spanning from food to medicine and environmental science [1][2]. This interface plays a crucial role in ensuring the safety
  • shown that ripened cheese and cheese spreads acquire a higher aluminum content as compared to other milk products [6]. Aside from wrapping and container packaging, aluminum has found a wide popularity in other applications, such as manufacturing of kitchen utensils, cosmetics, and components for medical
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • DNA origami nanostructures is rarely explored, yet promising applications are foreseen to require such information. DNA nanostructures have been explored as drug delivery vessels for chemotherapeutics [1][2]. With the constant pursuit of effective targeting strategies [3], they could eventually be
  • lithographic applications. Conclusion We explored model ion interactions with DNA origami nanostructures, showing promise for fusing these state-of-the-art nanotechnology approaches. The main effects of ion beams on nanostructures are shown in Figure 4A–D. The most important observation is that the shape of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • unusual hydrodynamic behavior of electrons, which was observed in narrow graphene nanoconstrictions [6]. Given these unique properties, it is unsurprising that graphene became a top candidate for a broad range of applications in optoelectronics and possible future energy-efficient and high-speed
  • . Complementary studies performed using both in situ and ex situ AFM reveal the modification in SiO2/Si substrate topography. Our results are important not only for applications of water-assisted FEBIE to etching carbon allotropes and SiO2 materials but also in other fields. For example, where electron-driven
PDF
Album
Full Research Paper
Published 07 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • their high potential applications in various fields, including theragnostics. The PLGA SPION nanoparticles were modified to carry siRNA for silencing the inflammatory cytokine Cox-2 in activated macrophages and to serve as a tracer for locating activated macrophages in a mouse model of intra-uterine
  • system capable of transporting NPs that could carry iron oxide (IO) nanoparticles, IR780, and CHL for cancer theragnostic applications. Materials and Methods Chlorambucil (C0253), PLGA 504H (719900), IR780 (425311), FeSO4·7H2O (215422), FeCl3·6H2O (236489), NaOH (221465), oleic acid (364525), Pluronic™ F
  • and 72 h. The cytotoxicity results for F127@NP and F127-folate@NP was significantly lower at 72 h than that for PVA@NP. There were no statistically significant differences between F127@NP and F127-folate@NP. Discussion Nanomedicines have their applications in a number of cancer treatments and
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • of NR composite. The usage of GO-VTES may be suitable for the preparation of NR composites for tire applications as the composite may reduce water permeability and enhance the abrasion resistance of commercial products [30]. Experimental Materials The natural rubber used in this work is high-ammonia
PDF
Album
Full Research Paper
Published 05 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • nanodot applications include quantum performance enrichment for diodes [15][16], memory devices [17][18], transistors [19][20], and solar cells. They are also widely used in biological applications [21][22][23]. QDs have been used in various functions of solar cells, including electron- or hole
  • quantum dots and nanoparticles in organic solar cells has already been demonstrated [29][30][31][32][33][34]. The list of both materials and types, as well as applications, is not limited. Moreover, new quantum dots with innovative properties are still being researched and produced [35][36][37]. This
  • [39][40]. One of the main existing challenges in synthesizing QDs is to increase their photoluminescence efficiency while simultaneously shifting the photoluminescence maximum to longer wavelengths. Initial applications focused on OLEDs. CdSe/ZnS quantum dots are luminescent inorganic nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • the mechanical bandwidth of scanner and cantilever. In most ORT applications, the piezo that tracks the topography changes is also used to generate a periodic Z axis motion. However, the resonance frequency of the piezo sets a limit on the actuation frequency. To overcome this problem, one approach is
  • led to a significant increase in the achievable ORT frequency [24]. The other speed-limiting factor is the snap-off ringing of the cantilever, especially for applications in air and vacuum [27]. Although this physical phenomenon can be used to extract material properties [28], it slows down the
  • disturbance is common in AFM measurements, since it is difficult to avoid the sample tilt in real AFM applications. While a single integral controller ensures zero steady-state error for a step disturbance, for a triangular disturbance, the error is a constant non-zero value, which can be used to compare the
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024
Other Beilstein-Institut Open Science Activities