Search results

Search for "contact" in Full Text gives 1117 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • to improve the insecticidal efficacy because the higher surface area and specificity provide stronger contact of the active substance with the insects [45]. The working mechanism of the nanocomposites may be the effective penetration through pores and microfibrils of the insects’ cuticle [45] and the
PDF
Album
Full Research Paper
Published 17 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • ; intermodulation; KPFM; nc-AFM; surface photovoltage; time-resolved measurements; Introduction Kelvin probe force microscopy (KPFM) is a well-known variant of AFM that allows probing at the nanoscale the electrostatic landscape on the surface of a sample by measuring the so-called contact potential difference
  • due to the enhanced quality factors under vacuum, which severely limits the frequency window available to increase the amplitude of the intermodulation products (for a more detailed discussion, see [14]). In this work, we propose to approach the measurement of intermodulation products with non-contact
  • is necessary because the first mode is used by the main AFM controller for topographic control (in frequency modulation mode in the case of non-contact AFM under UHV). In other words, it is the AFM controller which generates the source signal at ω0 + Δω0 which “excites” the mechanical oscillation of
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • ]. However, the working principle of these techniques is based on optical interferometry mapping which can be challenging for light-sensitive devices. Furthermore, it can be advantageous to employ a method that also allows for mechanical contact and manipulation. Atomic force microscopy (AFM) [11][12][13][14
  • ] is a powerful and versatile technique to study fundamental and functional characteristics of materials and devices at the nanoscale, with application in physics, materials science, engineering, and biology. It can operate in either static (contact mode) or dynamic (tapping and noncontact mode) modes
  • be used to measure contact potential difference (CPD) between the tip and the sample [18][19][20]. In particular, time-dependent KPFM [21][22][23] allows us to determine temporal changes of CPD and understand the dynamic behavior of functional devices at the nanoscale. Kelvin probe force microscopy
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • 3 µm were phagocytosed to a higher extent than both smaller and larger particles in this experiment. According to the authors, this is based on the number of possible contact points with the cells, depending on the morphology of the cell surface. In addition, the particle charge (i.e
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • relations under reverse and bias voltages, indicating a good ohmic contact between semiconductor materials and Ag electrodes [42]. It is worth noting that the current rise corresponds to the light intensity increase. The highest photocurrent reached 18 μA under a light illumination of 1.28 mW·cm−2. The low
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • expect that these features resulted from the way this particular fiber split open after FIB notching. Likewise, the lone drop in stiffness makes sense, as the AFM probe experiences a local reduction in tip–substrate contact area. However, similar topography and stiffness jumps forming a compliant band
  • another. This compliance likely stems from a local reduction in contact area, as sudden changes in height up to tens of nanometers can occur at these interfaces (Figure 7a). Nevertheless, these are “real” ET values; in other words, these local gaps in the fiber would affect ET of the full fiber
  • contact) were approximately 1–2 nm. Some images were enhanced by approximately doubling both the setpoint and free air amplitudes while maintaining the amplitude ratio close to 50%. Typical map sizes and resolutions ranged from 500 nm × 500 nm (512 × 512 pixels, ca. 1 nm/pixel) to 20 × 20 μm (2048 × 2048
PDF
Album
Full Research Paper
Published 05 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • lenses and plates at oven temperature to prevent powder condensation, which otherwise may lead to undesirable changes in contact potentials during the measurements. The present experiments were carried out at temperatures typically 10–20 K below the temperatures for which the decomposition of the
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • sonication in an ultrasonic bath SW3H (Sono Swiss). Once the films were drop cast on aluminum mirrors, the IR spectra were recorded. The synthesized Si3P4 NPs were reactive and emanated phosphine upon contact with moisture. Once the ampoules were opened in an inert atmosphere, particles were allowed to
  • the case of alcoholysis passivation, degassed 1-dodecanol was introduced to the Si3P4 product powder without air contact. Si3P4 NPs samples were examined on a diffractometer DRON-4-07 (Cu Kα radiation) in the form of films on a polished quartz substrate; phase analysis was performed using the program
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • the Ag particles become smaller when the size of the particles increases, resulting in a stronger hot spot effect. However, when the particle size exceeds a critical threshold, the Ag particles come into contact with each other, causing the hot spots to dissipate. Based on these findings, we selected
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • exposed to tartronic and dihydroxymalonic acid. However, a color change from yellow to reddish-brown was observed for the nanoceria in contact with ascorbic acid, as previously observed [53]. Nanoceria agglomerates completely dissolved in ascorbic acid within 1000 h. Ascorbic acid dissolution-accompanied
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • performance of the electrode (432.3 mAh·g−1 at a specific current of 5000 mA·g−1) are attributed to the enhancement in distribution and chemical contact between Ge nanoparticles and the biomass-based carbon matrix. A comparison with other synthesis routes has been conducted to demonstrate the effectiveness of
  • contact formation during in situ synthesis. Keywords: Ge anode; in situ synthesis; lithium-ion batteries; magnesiothermic reduction; Introduction The significantly increasing energy consumption leads to the exhaustion of fossil fuel sources such as coal, oil, and natural gas. Additionally, there are
  • GeO2 and biomass-derived carbon as precursor. A series of experiments using other methods to combine Ge and biomass carbon was also conducted for comparison. The in situ synthesized electrode exhibits superior electrochemical performance in lithium storage. This is attributed to a better contact
PDF
Album
Full Research Paper
Published 26 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • of the atomic force microscope (AFM) for the evaluation of the surface potential with nanometric resolution. KPFM is a valuable investigative approach for the study of work functions via the measurement of the contact potential difference VCPD, that is, the difference between the electrostatic
  • 600 °C. Note that the GaInAsP:Zn layer is an intermediate layer with a doping concentration of 6 × 1018 cm−3 with the purpose to smooth the InP:Zn/GaInAs:Zn transition bandgap and to reduce contact resistances. Finally, a GaInAs:Zn contact layer was made at a lower temperature of 580 °C in order to
  • misleading VCPD value [14]. Kelvin probe force microscopy The following KPFM experimental procedures closely follow those described in [12]. KPFM evaluates the contact potential difference (VCPD) between the surface of metallic and semiconductive samples and a conductive AFM tip, which at equilibrium can be
PDF
Album
Full Research Paper
Published 14 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • mouth opening. By altering the parameters, it was unraveled that the system performs best when the long and short setae have different mechanical properties and different degrees of adhesion since the long setae generate the feeding current and the short ones establish the contact with the particle
  • . The second mechanism involves structures manipulating the water flow (e.g., setae and tentacles) that redirect the food particles and lead them to specialized structures that contact and capture them. A good example for the latter mechanism are the filtering setae of crustaceans (for in-depth reviews
  • to establish contact with the particles by inertial impaction and capture and transport them to the mouth opening [14][15][16][17][18]. These interactions (i.e., making contact with and handling of or manipulating particles) were previously documented in detail through observation under a binocular
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • wider cross section at the knee. In the extreme cases towards 90° kink angle, the straight portions of the wire nearly contact each other and the result is a rather short, nearly straight wire with a large wire attached perpendicularly at the middle. As such, results for values above 65° of kink should
  • along the surface in low specularity systems seems reasonable, as the possibility of random reflection on contact with the surface would naturally lead to a reduction of flux in the direction of initial flow after reflection. Specular reflections result in less overall change of direction of the flux
PDF
Album
Full Research Paper
Published 15 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • atomic force microscope (AFM) (NT-MDT, Moscow, Russia) in non-contact mode using the approach described previously [37]. The silver layers were removed randomly on the sample to form a sharp edge for measurement of height (layer thickness). AFM measurements were carried out in three different areas on
PDF
Album
Full Research Paper
Published 03 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • contact mode. AC160TS silicon cantilevers from Olympus with a typical spring constant of k ≈ 46 N/m, a nominal radius of curvature of r ≈ 7 nm, and a resonant frequency of ω0 ≈ 300 kHz were employed. Heat flow and weight changes of selected solvents were determined by thermogravimetric analysis (TGA
  • . Further details can be found in Supporting Information File 1. Electronic tongue mechanism Figure 4a shows the behavior of a liquid as a function of the time as it gets in contact with the transducer. Initially, the composite is dry, at a constant temperature, and traversed by a constant current (red part
  • produced by the impinging liquid drops over the heated surface of the transducer. The temperature change and the heat flow produced by the liquid as it gets in contact with the heated surface were estimated by dripping a liquid (of about 6.5 µL) into an empty crucible kept at 55 °C inside a
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • sol–gel methods, as well as pre-synthesised yolk–shell bionanohybrids have been studied subsequently. Optical microscopy and SEM confirm that the silica shell microstructures provide a reduced contact between cells. The inorganic matrix increases the survival of the cells and maintains their
  • bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the
  • the stress imposed by the direct contact with the silica matrix. Cells in interaction with, but not strongly confined by, the matrix quickly start to divide and to proliferate in pseudofilamentous structures [42] that tend to colonize the free space present in the highly porous regions of the silica
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

The origin of black and white coloration of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae)

  • Manuela Rebora,
  • Gianandrea Salerno,
  • Silvana Piersanti,
  • Alexander Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 496–508, doi:10.3762/bjnano.14.41

Graphical Abstract
  • related to the superhydrophobicity of their body surface, as an adaptation of an aquatic insect to the subaerial life at the adult stage. Indeed, leg scales with their nanostructures are able to entrap air [11][12][13] and play an important role in contact with water during egg laying, giving the mosquito
PDF
Album
Full Research Paper
Published 17 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • hydrophobic. The contact angle measurements revealed that the contact angles of the filter paper coated with DPP-H, DPP-DCV, and DPP-INCN were 123.9°, 113.4°, and 131.8°, respectively. In contrast, the contact angle of the bare filter paper remained at approx. 0°. These results suggest that coating the DPP
  • conventional floating membranes. This is because PTMs are in most cases in contact with the bulk water. Moreover, 3D photothermal evaporators have superior properties to their 2D counterparts because solar steam evaporation can be facilitated by the increased surface area. Note that 3D evaporators enable
  • observations (Figure 12a). These materials can stably float at the air–water interface (Figure 12b). The water contact angle of the bulk materials was as high as 130° without any surface modification (Figure 12c). Hydrophobic foams are considered to have advantages over hydrophilic foams, such as a greater
PDF
Album
Review
Published 04 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • in semiconductors in the NIR–mid-IR region is possible when the free carrier concentrations lies between 1016 and 1019 cm−3 [54]. As an example of how the free electron density influences the plasmon resonance when materials with different work functions are combined, metals in contact with
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • film S that is in contact with a ferromagnetic insulator layer FI. Spin current and induced magnetization are calculated not only at the interface of the S/FI hybrid structure, but also inside the superconducting film. The new and interesting predicted effect is the frequency dependence of the induced
  • perturbations produced by the spin current and induced magnetization inside the superconducting film in contact with a ferromagnetic insulator layer with precessing magnetization. Distributions of spin current and induced magnetization originating from the dynamic proximity effect in aluminium were recently
PDF
Album
Full Research Paper
Published 21 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • known as a method that can measure the contact potential difference (CPD) between a tip and a sample with high spatial resolution [4][5]. KPFM is based on the detection of the electrostatic force between a tip and a sample using atomic force microscopy (AFM) [6][7][8]. CPD and topographic measurements
PDF
Album
Full Research Paper
Published 31 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • drop inside and get in contact with the exposed Si substrate, as marked in Figure 4c. The outer SiOx NWs can be decomposed by the Si substrate, and the core particle consisting of Au and Ni can get in direct contact with the substrate. Thus, Au–Si droplets and Ni silicide can form due to the easy
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • coupling was proven in doubly clamped beams, square membranes and circular membranes [18][26][27][28][29][30][31]. For atomic force microscopy imaging, a slight angle between the sensing mechanical resonator and the sample of interest is required, ensuring that the only contact occurs between the sample
PDF
Album
Full Research Paper
Published 19 Jan 2023
Other Beilstein-Institut Open Science Activities