Search results

Search for "electrode materials" in Full Text gives 60 result(s) in Beilstein Journal of Nanotechnology.

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • derivatives, such as active carbon, porous carbon, graphene, carbon nanotubes with good electrical conductivity and high specific surface area, are most commonly employed as electrode materials [5][6][7]. The other category are pseudocapacitors governed by reversible faradic redox reactions at the interface
  • between active materials and electrolyte, for which transition metal oxides/hydroxides with multiple valence are used as electrode materials [8][9]. EDLCs hold a high power density and long cycling stability, but their practical application is limited by the low energy density. In comparison, pseudo
  • affecting the practical application of electrode materials. The cycling stability (Figure 6b) of the Ni(OH)2/Ni-NF/MG-5 electrode is evaluated by a continuous GCD test up to 3000 cycles at a current density of 1 A/cm3. It is noticed that the capacitance of Ni(OH)2/Ni-NF/MG-5 decreases gradually without an
PDF
Album
Full Research Paper
Published 25 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • contact on flat and nanostructured substrates demonstrated that the presence of ITO is irrelevant to the electrochemical performance. Selected oxygen evolution activities for planar state-of-the-art electrode materials (adapted from a review by Cook et al.) [9]. The overpotential η is shown here as a
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • for replacing the flammable liquid electrolyte in LIBs, especially in safety-related environments like automotive applications [6][7]. Furthermore, the increased electrochemical window in the case of SSEs opens the path to use advanced electrode materials with improved volumetric and gravimetric
  • within a small volume under the tip, leading to a deformation of the surface. The resulting strain is measured by the system and reflected in the ESM amplitude signal. For electrode materials, the strain is supposed to be directly proportional to the Li-ion mobility [24][25][26][27]. In this work we
PDF
Album
Full Research Paper
Published 28 May 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • and good adsorption capacity [1][2].Graphene has a diverse range of applications in solar cells, hydrogen storage materials, electroluminescent devices and electrode materials [3][4][5]. In particular, graphene or reduced graphene oxide (rGO) and biopolymer (e.g., gellan gum, chitosan, and alginate
PDF
Album
Full Research Paper
Published 17 Apr 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • electronic devices as power supplies, which have potential use in electrical vehicles (EVs) and smart grids. However, the energy and power density of current LIBs cannot satisfy the high demand of EVs. The development of new electrode materials is essential for improvement of the energy density. An ideal
  • electrode material for LIBs should have good electronic conductivity, a lower Li diffusion energy barrier, as well as high energy and power densities. By reducing the bulk electrode materials to low-dimensional materials, a higher energy capacity and higher charge/discharge rate can be obtained as the low
  • -dimensional materials have higher exposure to the electrolyte [1]. Two-dimensional materials, such as Co3O4, NiO, phosphorene, SnS and V2O5 all exhibit an excellent capacity retention, rate performance, lower energy barrier and long cycling life compared to their bulk counterparts used as electrode materials
PDF
Album
Full Research Paper
Published 15 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • -transfer resistance of the cell. A balance between the different structural parameters of the CNx hybrid allows for electrode materials of great potential for use in energy storage applications. Schematic representation of nitrogen-doped porous carbon–carbon nanotube hybrid formation with the use of Ni or
  • the Fe/Mo catalyst contained the largest amount of nitrogen and the smallest proportion of porous carbon. Such a correlation could indicate that in the used synthetic conditions, the nitrogen atoms are mainly incorporated within the walls of the MWCNTs. The CNx hybrids were investigated as electrode
  • materials for supercapacitors and showed a good power density in a 1 M H2SO4 electrolyte. It is shown that the power density is improved with an increase in the fraction of MWCNTs and the porous carbon provides good capacitance for the electrode, while nitrogen atoms were found to decrease the charge
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Towards molecular spintronics

  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 2464–2466, doi:10.3762/bjnano.8.245

Graphical Abstract
  • , taking into account that for device integration, the molecular layers need to obey certain boundary conditions, such as long-term stability, process compatibility, and the ability to integrate with electrode materials. Progress in this respect was only made possible by a continuous feedback from basic
PDF
Editorial
Published 21 Nov 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • ranges, faster charging, and lower costs), the development and optimization of electrode materials are of great interest. Considering that a target driving range of 300 miles is required for BEVs to achieve a sustainable mass market penetration (as defined by the US Department of Energy), the energy
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • candidates as electrode materials for Li-ion batteries [39]. For applications in Li-ion batteries, a high coverage of Li atoms on a material is required. Due to its buckled large surface area, silicene seems to be a good candidate for Li-ion battery applications. Li adsorption on pristine silicene has been
PDF
Album
Full Research Paper
Published 23 Aug 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • , which is considered to be a vital part in the field of renewable resources, has attracted much attention in recent years. Substantial effort has been made to improve the performance of electrode materials for lithium-ion batteries aiming at aspects including safety, energy density, lifetime and power
  • and nanorods are considered to be promising electrode materials for excellent lithium-ion battery performance. This is partly because of their small size enabling fast electron transport and decreasing retardation at the interface [21][22]. Electrospinning, a simple and versatile method, has been
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • ) single crystal substrates. Beside their potential application as electrode materials, the choice of these established standard substrate for STM/STS investigations provides the advantages of comparability to results of earlier measurements and well-known fast cleaning treatments. Experimental Er3N@C80
PDF
Album
Full Research Paper
Published 23 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • to the particular two-terminal setup [54] and electrode geometry but allow relative comparisons of the tested electrode materials. Figure 7 shows the current density resulting from a positive potential applied to the entire cell (anode + cathode) of 1.50 V. Both platinum coated electrode (PVD and
PDF
Album
Full Research Paper
Published 22 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • hybrids by a rapid, facile microwave-assisted hydrothermal method for LIB applications [218]. CuO–graphene nanostructures were used as nonenzymatic glucose sensors [219], humidity sensors [220], for CO2 mineralisation [221], as supercapacitors [222], and as pseudo-capacitor electrode materials [223]. Zinc
PDF
Album
Review
Published 24 Mar 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • polarization of the electrode materials, which is a common phenomenon for anode materials of LIBs [16][17]. The improved lithium storage performance can be ascribed to the unique nanostructure of the as-prepared Si anode. The morphology of the prepared Si anode and the precursors were investigated by SEM
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • materials; Li-ion batteries; nanocomposites; nanostructures; Introduction LiNi0.5Mn0.5O2-based electrode materials [1] were proposed as a less expensive alternative to LiCoO2 for high energy density Li-ion batteries containing less toxic elements than cobalt. The reasonable combination of their
  • conductivity of this material and the higher values of the Li+ diffusion coefficient. Figure 8 displays the XRD patterns of electrode materials after electrochemical cycling at high discharge currents. It can be seen that the splitting of (018)/(110) reflections is much higher in carbon-coated materials
  • Li1.4Ni0.5Mn0.5O2+x crystallites and, hence, to a substantial decrease in its electrochemical capacity values. The electrode–electrolyte interface in composite electrode materials is reduced by the thin carbon nanocoating that protects a part of Li1.4Ni0.5Mn0.5O2+x surface from electrochemical degradation. SAED
PDF
Album
Full Research Paper
Published 09 Dec 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • further corroborated by density functional theory calculations [51][52]. As mentioned above, spinel ferrites can, in principle, be used as negative electrode materials in rechargeable Li-ion batteries. However, they have been shown to undergo conversion at low potential and these electrochemical reactions
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • as one of the most advanced inventions in high energy density storage devices and are extensively utilized in various electronic systems for mobile phones, computers and vehicles [1][2][3]. It is common knowledge that the capacity and energy density of LIBs are highly dependent on the electrode
  • materials. Commercial graphite, with low specific capacity and poor rate capability, no longer meets the urgent requirements of modern technologies as an anode material for LIBs [4][5]. Hence, exploring new candidates with higher energy density and better cycling endurance becomes imperative. Presently
PDF
Album
Full Research Paper
Published 14 Sep 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • electrode/electrolyte interfaces based on first-principles electronic structure calculations. As Pb has been used as one of the metallic electrode materials, we have already studied the Pb self-diffusion on flat and stepped Pb surfaces [13] as this controls the growth mechanism of the contacts. The results
PDF
Album
Full Research Paper
Published 11 Apr 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

  • Daniela Lehr,
  • Markus R. Wagner,
  • Johanna Flock,
  • Julian S. Reparaz,
  • Clivia M. Sotomayor Torres,
  • Alexander Klaiber,
  • Thomas Dekorsy and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2015, 6, 2161–2172, doi:10.3762/bjnano.6.222

Graphical Abstract
  • and THz spectroscopies. Keywords: chemical doping; metal oxides; semiconductor nanoparticles; single-source precursors; Introduction There is an ever increasing demand for electrode materials exhibiting optical transparency in the visible region of the electromagnetic spectrum, because they are
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Nov 2015

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • metallic Mg and insulating LiH, which are generated during the reaction. The improvement of the poor electronic conductivity of the active material in powder form has been widely addressed in the literature for different electrode materials (in aqueous and non-aqueous electrolytes). A solution is carbon
PDF
Album
Review
Published 31 Aug 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • stationary energy storage has become an additional challenge, which also triggers research on alternative batteries. Major efforts are directed towards continuous improvements of the different Li-ion technologies by more efficient packaging, processing, better electrolytes and optimized electrode materials
  • shown in Figure 1. Ultimately, the energy density of a practical battery is determined by the cell reaction itself, that is, the electrode materials being used. The need for a proper cell design and packaging considerably reduces the practical energy density of a battery compared to the theoretical
  • energy density. The cell reaction of Li-ion batteries is not fixed and different electrode materials and mixtures are used depending on the type of application. Graphite/carbon and to a lesser degree Li4/3Ti5/3O4 (LTO) serve as the negative electrodes. Recently, silicon has been added in small amounts to
PDF
Album
Review
Published 23 Apr 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • under high voltages and chemical compatible with the chosen electrode materials. Thus, additives are used in order to enhance the ionic conductivity and to improve the chemical compatibility. Also the properties of the solid electrolyte interphase (SEI) on the negative electrodes, which is essential for
PDF
Album
Full Research Paper
Published 20 Apr 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • potentials as well as the apparent reaction rate constant, , for the different electrode materials are summarized in Table 2. The reaction rate constant was calculated from: where j0 is the cathodic exchange current density (obtained from the Tafel plots of the linear sweep measurements), n = 1 is the number
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015
Other Beilstein-Institut Open Science Activities