Search results

Search for "electronic" in Full Text gives 970 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • dynamics. Over the past few decades, these studies have become even more important due to its applicability in manufacturing industries. The refrigeration of electronic instruments with a fan, cooling of atomic receptacles during an emergency power outage, and solar receivers for storage of thermal energy
PDF
Album
Full Research Paper
Published 02 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • formation by acting as a physical barrier between the substrate and the assembling moiety, buffer layers are also widely used to study intrinsic electronic properties of functional organic systems such as organic semiconductors [32][33] and films of 1D/2D polymers [34][35][36][37] via electronic decoupling
  • . Alkane buffer layers have been employed as efficient electronic decoupling platforms for studying the intrinsic electronic properties of graphene and fullerenes [38]. Apart from alkane derivatives, inorganic systems such as chemisorbed iodine layers [34][35][36][37], and ultrathin layers of KCl [39
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • CGCNF electrochemical performance. By improving fiber alignment, increasing the number of mesopores and enhancing the electrode specific surface area, one can effectively improve the electrochemical performance of an electrode. These improvements can significantly contribute to the electronic and ionic
PDF
Album
Full Research Paper
Published 27 Aug 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • concentration), the presence of ions in the solvent, and a possible assembly of solutes at the interface. Furthermore, the reaction rates are determined by the chemical and electronic state of the sample surface, ion concentrations in the solution, and the availability of possible reaction intermediates. Most
PDF
Album
Full Research Paper
Published 24 Aug 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • , Germany Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, D-85747 Garching, Germany Institute of Electronic Engineering and
PDF
Album
Full Research Paper
Published 21 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • years in many industrial branches, ranging from electronic devices over battery electric vehicles (BEVs) to applications in grid energy storage. Since for grid energy storage a large amount of installed absolute capacity (rather than specific capacity) is required and LIB cells are still expensive
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • -50009 Zaragoza, Spain Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain 10.3762/bjnano.11.104 Abstract Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced electronic components
  • for quantum computation. The behavior of nanosized superconductors as one-dimensional quantum oscillators [1], Josephson junction arrays [2], electronic transport devices [3][4][5][6][7], very small-scale devices [8][9], micrometer-scale coolers [10], or thermal and spin sensors [11][12] has been
  • . The presented methodology yields an advanced bottom-up approach for the fabrication of innovative 3D nano-architectures, in which nano-superconductivity may provide an advantage, for future electronic components, particularly for sensors, energy-storage components, and quantum computing. Experimental
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • bilayer [49]. The obtained result for Li-hBN is explained by the relatively high value of the electronic density of states at the Fermi level and the significant contribution to the pairing interaction from the inter-layer electron–phonon coupling [41]. This is due to the formation of characteristic bonds
  • graphene, is unfavorable regarding superconducting states. The reason for this is that the van Hove singularity in the electronic density of states is considerably distant form the Fermi level [97]. This is not the case for a square lattice, where the van Hove singularity is very close or even at the Fermi
  • were given. Acknowledgements The authors would like to thank Nao H. Shimada, Emi Minamitani, and Satoshi Watanabe (University of Tokyo) for providing data on the Eliashberg function for Li-hBN bilayer, presented in [41], and for providing information on the electronic structure of bulk Li-hBN.
PDF
Album
Full Research Paper
Published 07 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • also indications in the literature for a significant hybridization, which results in a perturbation of the intrinsic molecular properties. In this work we study the electronic and optical properties as well as the lateral structure of tetraphenyldibenzoperiflanthene (DBP) on Ni(111) with and without an
  • n-type contact for future molecular electronic devices. Keywords: buried interface; decoupling; hexagonal boron nitride; hybridization; tetraphenyldibenzoperiflanthene (DBP); two-dimensional materials; Introduction The interfaces between organic molecules and metal contacts play a crucial role in
  • the design of new molecular electronic devices since they affect the charge carrier injection and therefore the device efficiency. An important process to consider is the electronic interaction of organic molecules that are in direct contact with the metal, i.e., the interaction of frontier orbitals
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • even after adsorption. For instance, adsorption on a BL often retains the sharp electronic and vibrational energy levels that are characteristic for the atom or molecule vacuum state and that would inevitably be broadened or even quenched upon adsorption on the metal surface. Narrow molecular
  • ). The molecule therefore adopts a lander configuration that supposedly is beneficial to the electronic decoupling of its backbone from the substrate it is adsorbed to. Moreover, a twisted tetracene backbone (Figure 1c) is energetically more favorable than its planar, i.e., nontwisted, geometry (Figure
  • in importance for its suitability in light-emitting diodes [16] and organic field-effect transistors [17]. As substrate surfaces, Pt(111) and Au(111) were chosen for their different electronic structure around the Fermi level. Pt(111) exhibits a high density of d states close to the Fermi energy (EF
PDF
Album
Full Research Paper
Published 03 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • & Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, Tübingen, Germany Institute of Electronic Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, Ulm, Germany Institute of Micro- and Nanotechnology, Technische Universität Ilmenau, Max-Planck-Ring 12, Ilmenau
  • electronic functionality of such nanometer-scale building blocks. A rational and well-established synthesis strategy for the creation of complex silicon nanostructures is metal-catalyzed vapor–liquid–solid (VLS) nanowire growth [13]. VLS nanowire growth belongs to the gas-phase synthesis procedures, similar
  • the optical and electronic behavior of nanowire building blocks. Hence, there is an inherent need for non-destructive characterization techniques that are able to elucidate the local crystallinity. Raman spectroscopy is such a type of non-destructive characterization techniques and has become a
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • located in this linkage with a noticeable electronic delocalization [42]. Thus, the presence of P=N–P=S linkages in the precursor is desirable. The precursor should induce the persistent colloidal stability of the nanoparticles in water. It has been already shown that the Girard’s T reagent (acethydrazide
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • mass and the fragments with m/z 18 and m/z 44 (water and carbon dioxide, respectively) are attributed to dehydroxylation and the thermal decomposition of the NAA anion. Considering the hydration water amount (9.6%), the NAA content in ZnAl-NAA-LDH determined by electronic absorption spectrophotometry
  • of NAA in the LDH was determined by electronic absorption spectrophotometry in the UV–vis region using the maximum absorption (λmax) at 280 nm [15]. The ZnAl-CO3-LDH material was synthesized for comparison in the bioassays. The sample was prepared by co-precipitation at constant pH value, according
  • ) were recorded in a Shimadzu X-ray Diffractometer XRD-6000 mode using Cu Kα1 radiation (λ = 1.5406 Å), 40 kV, 40 mA, sweep range 2θ from 2° to 70° with a scan step of 0.02°/s. Electronic absorption spectra were acquired in an equipment Thermo Scientific model Evolution 300. The morphology of the LDH
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • Asieh Yousofnejad Gael Reecht Nils Krane Christian Lotze Katharina J. Franke Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany 10.3762/bjnano.11.91 Abstract The electronic structure of molecules on metal surfaces is largely determined by hybridization and
  • screening by the substrate electrons. As a result, the energy levels are significantly broadened and molecular properties, such as vibrations are hidden within the spectral line shapes. Insertion of thin decoupling layers reduces the line widths and may give access to the resolution of electronic and
  • the modes with strong electron–phonon coupling. Keywords: decoupling layer; molybdenum disulfide (MoS2); scanning tunneling microscopy, tetracyanoquinodimethane (TCNQ); vibronic states; Introduction When molecules are adsorbed on metal surfaces, their electronic states are strongly perturbed by
PDF
Album
Full Research Paper
Published 20 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • energy range of the bandgap was found to be 1.2 eV [15][16], 1.1–1.3 eV [17][18] and 1.25–1.46 eV [19] and these discrepancies have been pointed out in a different study [20]. There are also discrepancies in terms of which type of electronic transitions are responsible for determining the minimal bandgap
  • the Brillouin zone space are also ambiguous [6][8][10][19][20]. The crystalline properties of Sb2Sе3, such as optical absorption, reflection, and photoconductivity, were studied in this work. In order to determine the bandgap, the nature of electronic transitions, among other properties, the
  • polarization conditions, is formed due to the electronic transitions from different valence bands to a conduction band. Estimated values for the edge positions can be obtained by extrapolating the absorption curve to the energy axis, as shown by the black dotted lines in Figure 2. Figure 3A illustrates the
PDF
Album
Full Research Paper
Published 16 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • Abstract Recent experiments suggest graphene-based materials as candidates in future electronic and optoelectronic devices. In this paper, we propose to investigate new photodetectors based on graphene nanomeshes (GNMs). Density functional theory (DFT) calculations are performed to gain insight into
  • electronic and optical characteristics of various GNM structures. To investigate the device-level properties of GNMs, their current–voltage characteristics are explored by DFT-based tight-binding (DFTB) in combination with non-equilibrium Green’s function (NEGF) methods. Band structure analysis shows that
  • ]. In this paper, for the first time, we study a new GNM-based photodetector using computational modeling. In order to do a complete device simulation, we initially perform ab initio DFT calculations to investigate the electronic and optical properties of the several materials used in devices channels
PDF
Album
Full Research Paper
Published 15 Jul 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • component at ωm by adjusting Udc. The surface potential is then found as Ulcpd = Udc. The response at the second harmonic contains additional information about the capacitance gradient C′′ = ∂2C/∂z2. This signal is interesting in itself as it contains information about both geometric and electronic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • Vadim Morari Aida Pantazi Nicolai Curmei Vitalie Postolache Emil V. Rusu Marius Enachescu Ion M. Tiginyanu Veaceslav V. Ursaki D.Ghitu Institute of Electronic Engineering and Nanotechnologies, Chisinau MD-2028, Republic of Moldova Center for Surface Science and NanoTechnology, University
  • spin coating. RRS from solids can be observed if the energy of the incoming or scattered photons matches real electronic states in the material. One refers to incoming and outgoing resonance, respectively [38][45][46][47]. Taking into account the band gap value and the width of band tails in ZnMgO thin
PDF
Album
Full Research Paper
Published 12 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • result, Choi et al. were able to measure an improved sensitivity for gas sensors made of tin oxide nanowires (SnO2 NWs) in comparison with powder-based SnO2 thin films [9]. For the use of NWs in electronic and sensor devices, freestanding NWs often have to be scratched off of the growth substrate
  • laterally aligned NWs in sensor or electronic devices, control of the NW length is highly desired. Longer NWs can be contacted by means of standard lithography processes and do not require electron-beam lithography [12][28]. In the experiments presented in Figure 6, the process time was increased from 8 min
  • will fall below the required ideal concentration for the NW growth. A sufficient oxygen concentration can no longer be supplied, and the formation rate of SnO2 decreases. This results in a thinning of the NW diameter. The diameter modulation of the NWs could have consequences in the electronic
PDF
Album
Full Research Paper
Published 28 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • found to be 2.82 nm. Wang et al. carried out a similar study by depositing a 10 nm thin ZnPc film on a graphene/SiO2/Si substrate to study the effects of the molecular orientation on the interfacial electronic properties. The roughness of the film was reported to be 2.47 ± 0.28 nm [19]. The crystallite
PDF
Album
Full Research Paper
Published 19 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • electronic, optoelectronic and thermoelectric devices in the future. Keywords: phonon concentration; phonon lifetime; Raman spectroscopy; thermal coefficients; Tungsten diselenide; two-dimensional material; Introduction Since the discovery of graphene, atomically thin two-dimensional layered materials have
  • includes its high mobility of ≈500 cm2/V·s at room temperature, and a strong spin–orbit coupling [3][13][14]. Thus, it is not surprising that a rich variety of electronic and optoelectronic devices have already been demonstrated using 1L WSe2 which harnesses its exceptional properties [13][15][16]. It is
  • well-understood that the underlying factors governing the optical, electronic and thermal properties of solid-state materials are strongly influenced by phonons and their spatio-temporal response toward external stimuli. Raman and photoluminescence (PL) spectroscopy has been a remarkable tool to gauge
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • always shows strong satellites about 6 eV above the main electronic lines [47]. In composite materials, Ni2+ can arise from the combination of nickel coordinated with nitrogen and from the oxidation/hydroxylation of nickel (since the samples need to be briefly handled in air to be introduced into the XPS
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • wafer-scale fabrication. This must be available at the same level of purity, with doping control and electronic compatibility, as well as scalable methodologies to create a large number of arrays of point defects with controlled emission to remotely entangle them and couple to ancilla qubits for quantum
  • as outlined in Table 2. In Table 2 the SPS criteria are described for specific application requirements. h-BN optical point defects and SPSs Hexagonal boron nitride (h-BN) is boron nitride’s most used polymorph. The electronic structure of h-BN has been studied by luminescence, as well as by other
  • values of the excited state and ground state. ZPL lines have distinct peaks in the experimental PL spectrum. The ZPL is the narrow component at a specific frequency of the absorption line of electronic excitation. The broader feature is then the phonon sideband (PSB). In h-BN, there are direct and
PDF
Album
Review
Published 08 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • improve the transport from the lower to the upper part of the device [9]. The good adhesion, low resistivity, and the stability against oxidation and corrosion of Al films make them suitable for application in optical and electronic devices [18][19][20]. The low resistivity and relatively high
PDF
Album
Full Research Paper
Published 27 Apr 2020
Graphical Abstract
  • unique properties that result from their atomic-scale thickness [1][2][3][4][5]. These materials, which include graphene, hexagonal boron nitride, and the large family of transition metal dichalcogenides, have electronic structures exhibiting metallic, semiconducting, and insulating properties. Novel
  • electronic devices have been realized by heterostructures based on vertical stacking or lateral stitching of 2D materials with different electronic properties [6]. Lateral graphene/hexagonal boron nitride (Gr/hBN) heterostructures, due to very low lattice mismatch between graphene and hBN, are most suitable
  • as platforms for fully two-dimensional nanoelectronic devices [7][8][9][10][11]. Resonant tunneling diodes (RTDs) are among various electronic devices realized on the platform of 2D Gr/hBN heterostructures [12][13][14][15][16]. RTDs exhibit negative differential resistance (NDR) and have a wide range
PDF
Album
Full Research Paper
Published 24 Apr 2020
Other Beilstein-Institut Open Science Activities