Search results

Search for "force" in Full Text gives 1026 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • in practical applications and provide green energy for more electronic devices. (a) The water flow is driven by an external electric field in the “motor” part, so the water molecules gain kinetic energy, and then an electromotive force is generated in the "Generator" part. (b) A scanning electron
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • . Multiple parameters were evaluated, namely the physical and mechanical properties, ocular permeation, FS remaining in ocular tissue, dissolution time, insertion force, insertion depth, and ex vivo ocular drug delivery. The permeation studies on porcine eyeballs showed that, after application of the MN
PDF
Album
Review
Published 24 Oct 2022

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • displacement current is proportional to the first derivative of the voltage (or the second derivative of the phase difference). The magnetization dynamics plays the role of an external force, and the first order derivative of φ0 is a source of an external current in the JJ. This was demonstrated in [25][27
  • ], where the authors included the first derivative of φ0 as the source of the electromotive force. The voltage is determined by the phase difference and does not depend on φ0. From this point of view, in the framework of the RCSJ model, the external current source cannot modify the expression for the
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • Cantilever-based atomic force microscopy (AFM) performed under ambient conditions has become an important tool to characterize new material systems as well as devices. Current instruments permit robust scanning over large areas, atomic-scale lateral resolution, and the characterization of various sample
  • tuning fork force sensor became increasingly popular. In comparison to microfabricated cantilevers, the more macroscopic tuning forks, however, lack sensitivity, which limits the measurement bandwidth. Moreover, multimodal and multifrequency techniques, such as those available in cantilever-based AFM
  • cantilever-based AFM offers experimental flexibility by permitting multimodal or multifrequency operations with superior force derivative sensitivities and bandwidths. Our instrument has a sub-picometer gap stability and can simultaneously map not only vertical and lateral forces with atomic-scale resolution
PDF
Album
Full Research Paper
Published 11 Oct 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • surfaces undergoing irradiation by a focused electron beam. Keywords: atomic force microscopy; electron beam; lithography; nanostructure; silver; sputtering; surface; Introduction Metallic nanostructures have various uses, including in nano-electro-mechanical systems [1], plasmonic biosensors [2], and
  • -contact atomic force microscopy (AFM) using the model Park NX10 AFM. The first experiment was conducted with beam current I as the variable parameter ranging from 7 to 500 pA. However, changing the value of I also changed the beam diameter d, which is a function of I and the working distance (WD). The
  • formed around a negatively charged EB, promoting nanostructure formation on metal surfaces. A smaller beam diameter would imply a higher current density and a stronger local electric field, resulting in a larger attractive force on the metal ions. The second observation is the existence of a curve peak
PDF
Album
Full Research Paper
Published 22 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • simulations to study the sputtering of a surface with water contamination by sub-500 eV ions. The information of interest is the chemical reactions occurring at and below the sample surface, as well as the mixing of the contaminant layer into the sample. The ReaxFF reactive force field is used in this work
  • [30]. ReaxFF force fields are specifically tuned for a set of atomic interactions. They are developed from quantum calculations and are adapted for MD simulations, providing faster calculations than pure quantum electrodynamics (QED)/density functional theory (DFT) and more information than classical
  • Methods Force fields The ReaxFF force field differs from other established force fields as it aims to bridge quantum mechanics (QM) and classical MD. Quantum mechanics algorithms are limited to small-sized samples (up to a few hundreds of atoms) due to the difficulty to solve Schrödinger equations for
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • ; Introduction The search for room-temperature magnetic semiconductors has been the driving force behind the increasing interest of material scientists and solid-state physicists in magnetic oxides [1]. This is due to their potential applications as building block of spintronic devices. Magnetic oxides are
PDF
Album
Full Research Paper
Published 15 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • radii of the circles were measured and then averaged. The effective elastic modulus and pull-off force of propolis were measured with a microforce measurement device (Basalt-01; Tetra GmbH, Ilmenau, Germany) [22][23][24]. The device mainly consists of micromanipulators as a platform holding the
  • the substrate and retracted from the surface as soon as the load force reached 5 mN. The load was chosen to resemble the force applied by bees when handling propolis. As no studies exist on mandibular forces and pressures of honeybees, pressures measured at the tip of mandibles of predacious
  • coleoptera [25] where used as a reference point. Tip pressures were calculated as suggested by [25]: where Fa is the applied force and A is the contact area obtained from the contact radius. With each propolis sample, a set of ten single measurements was performed, each on a different spot on the spoon
PDF
Album
Full Research Paper
Published 14 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • secondary electron detector. The working distance was 4–7 mm. Atomic force microscopy analysis of recrystallized structures The thickness of the wax coating on glass (1400 µg) was examined with an atomic force microscope (AFM, NanoWizard II, JPK instruments, Berlin, Germany). For this purpose, the
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • governing the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water. Metrics such as minimum detectable contact potential difference, minimum required AC bias, and signal-to-noise ratio are compared and contrasted both off resonance and utilizing the
  • liquid environments whilst needing the smallest AC bias for operation. Keywords: AFM; atomic force microscopy; closed loop; Kelvin probe force microscope; KPFM; open loop; performance; signal-to-noise ratio; Introduction Atomic force microscopy (AFM) is an enabling technique for the nanoscale mapping
  • of topography and surface properties of interfaces in a wide range of environments [1]. Kelvin probe force microscopy (KPFM) utilizes the application of a bias and a conductive probe to map the local electrical properties of an interface at the nanoscale [2], allowing for the determination of the
PDF
Full Research Paper
Published 12 Sep 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • was found that the wing folding ratio correlated with the lift force of the beetles. Wind speed, folding ratio, aspect ratio, and flapping frequency had a combined effect on the flight performance of the beetles. The results will be helpful to design new deployable FWMAVs. Keywords: beetle hind wings
  • insects in flight and to imitate the flight of insects [14][15]. Insect wings play a major role here. Hence, examining their flight parameters is crucially important to design biomimetic FMAVs [16][17]. It is increasingly clear that most insects obtain useful force with the help of aerodynamic mechanisms
  • , it was found that their flexibility can increase their mean lift coefficient [21]. In rhinoceros beetles, the elytra is also involved in aerodynamics during takeoff, producing an interaction force between the elytra and the hind wings [22]. To avoid damage or hinder the movement on the ground, the
PDF
Album
Full Research Paper
Published 26 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • interfacial energies between a eutectic Ga–In–Sn liquid alloy and single nanoscopic asperities of SiOx, Au, and PtSi have been determined in the temperature range between room temperature and 90 °C by atomic force spectroscopy. For all asperities used here, we find that the interfacial tension of the eutectic
  • increase of the interfacial energy as a function of the temperature, which can be explained by the reactivity between SiOx and Ga and the occurrence of chemical segregation at the liquid alloy surface. Keywords: atomic force microscopy (AFM); interfacial energy; liquid alloy; Introduction Recently, room
  • could be tuned by texturing the substrate surface. The wetting of gallium-based liquid alloys is thus complex and depends on the stability of the oxide at the liquid–substrate interface, the reactivity with the substrate material, and the substrate topography. In this work, we applied atomic force
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • , whereas C1 provided proper support while maintaining a low residue level. The length of the PMMA molecular chains (proportional to molecular weight and the attractive intermolecular force) appeared to be the determining factor in the mechanical strength (as demonstrated by C3 PMMA, enabling eight complete
  • analyzer had a pass energy of 20 eV. Atomic force microscopy The surface topographies of graphene were investigated by a Bruker Dimension Icon atomic force microscope (AFM), using PPP-NCH (NanosensorsTM) cantilevers with a tip radius smaller than 20 nm, a force constant of 42 N/m, and 250 kHz resonance
  • frequency. The AFM measurement was carried out in tapping mode. A 633 nm laser light aimed at the back side of the cantilever tip was reflected toward a position-sensitive photodetector, which provides feedback signals to piezoelectric scanners that maintain the cantilever tip at constant height (force
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • concentration, centrifugation was not used. Measurement equipment UV−visible spectrophotometry was performed by using a Shimadzu UV-3101PC system. Atomic force microscopy (AFM) tests were performed in a Multimode 8 system. The Raman tests were performed on a WITec alpha300 RA confocal Raman microscopy system
  • coefficient and the Hansen solubility parameters for KP15 According to the Hansen’s theory [19], the dispersed concentration C of a KP15 dispersion prepared by liquid exfoliation can be expressed by Equation 1 as follows. where δD is the intermolecular dispersion force, δH is the intermolecular hydrogen bond
  • ; δP is the intermolecular polar force; δA,D, δA,P, δA,H are the Hansen solubility parameters (HSPs) of the solute; and δB,D, δB,P, δB,H are the HSPs of the solvent. Therefore, to get a high concentration of KP15 in dispersion, the HSPs of the solvent for the exfoliation of KP15 should be close to
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • . Keywords: atomic force microscopy; drug delivery; elasticity; gelatin nanoparticles; Young’s modulus; Introduction Developing nanoparticulate drug carriers for various diseases and application routes requires establishing controllable systems, matching the needs of the respective application to achieve
  • extract the height image from the force–distance curves acquired at each pixel. Particles were well distributed on substrates showing no agglomeration and a narrow size distribution. GNPs occur with a smooth surface and are spherically shaped when measured under liquid conditions. Particles crosslinked
  • experimental triplicate. Atomic force microscopy For AFM measurements, GNPs were electrostatically fixed on positively coated silica specimens. Samples for AFM measurements were prepared according to the following protocol: Silica wafers were cleaned in an ultrasonic bath (Elmasonic B, Elma Schmidbauer GmbH
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • alignments. For instance, monodispersed colloidal particles can assemble through the evaporation of droplets [56][57]. The local flow and equilibrium interactions among the particles force the obtained assemblies to have periodic structures. The ordered colloidal crystals can regulate the transmission
PDF
Album
Review
Published 12 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • photocatalytic semiconductors. The local SPV is generally measured consecutively by Kelvin probe force microscopy (KPFM) in darkness and under illumination, in which thermal drift degrades spatial and energy resolutions. In this study, we propose the method of AC bias Kelvin probe force microscopy (AC-KPFM
  • modulated external disturbances. Keywords: atomic force microscopy; Kelvin probe force microscopy; photocatalyst; surface photovoltage; titanium dioxide; Introduction Surface photovoltage (SPV) is the change in surface potential caused by light illumination [1][2] and is measured to determine such
  • features as band bending [3][4], the lifetimes of excited carriers [5][6][7], the minority carrier diffusion length [8][9], and the plasmonic effect [10][11][12]. The local SPV is usually measured by Kelvin probe force microscopy (KPFM) [13][14][15][16][17][18][19][20][21], which is based on atomic force
PDF
Album
Full Research Paper
Published 25 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • electrochemical exfoliation, whereby graphene is exfoliated in an electrolyte from an electrode made of graphite [19]. In electrochemical exfoliation, ions from the electrolyte flow towards the graphite electrode and intercalate between the graphene layers. The electrochemical reaction provides a driving force to
  • the solvent of choice because of its favorable properties regarding LB deposition [14]. 1 mL of dispersion was initially centrifuged at a rate of 1500 rpm (relative centrifugal force, RCF, equal to 206g). The obtained centrifugation sediment contained the largest nanosheets of the initial dispersion
  • wavelength of 660 nm and the number of graphene layers was calculated for each sample, taking into account an absorption of 2.3% for each layer of graphene, as in the work by Bonaccorso and co-workers [43]. Although atomic force microscopy (AFM) is often employed to characterize graphene films [2][12][14][44
PDF
Album
Full Research Paper
Published 18 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • characteristics such as operating temperature, axial force range, and embossing time depend on material properties, geometrical size, and complexity, requiring multiple optimization studies. MN arrays must be capable of being handled without risk of damage and must penetrate the skin with low force to the
  • normal insertion of MNs, the applied force is linearly increased to the moment of rupture, which breaks the skin’s SC layer, followed by a sudden drop in the force-displacement graph [19][20]. However, the MN can be subjected to sudden excessive axial or lateral loads, which may induce early failure of
  • , hence improving overall insertion safety. For the MN insertion to be mechanically safe, the safety margin (SM), which is the ratio of failure force to insertion force, should be maximized and greater than unity (SM > 1) [22]. MNs must penetrate deep enough into the skin layers to enable an effective
PDF
Album
Full Research Paper
Published 08 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • constructed with 36 CuO molecules bonded by the COMPASS force field. This constructed nanoparticle size was 0.4 nm, as shown in Figure 1b. A molecular dynamics simulation of paraffin (i.e., eicosane C20H42) was also conducted for comparison with the aqueous solution. In the alkane/CuO nanofluid simulation
  • incorporated using the COMPASS force field [50]. Moreover, it is known from the literature that the COMPASS force field has already been used for alkanes and benzene-based systems. Therefore, this force field proved to be an accurate approach for the alkane-based fluidic system in this work [50]. The paraffin
  • constructed for molecular dynamics was a straight-chain alkane molecule. The COMPASS force field was applied using the Material Studio. The alkane radius is decreased in the figure for a clearer visualization so that the nanoparticles can be clearly illustrated and identified. Both systems (i.e., nonaqueous
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Quantitative dynamic force microscopy with inclined tip oscillation

  • Philipp Rahe,
  • Daniel Heile,
  • Reinhard Olbrich and
  • Michael Reichling

Beilstein J. Nanotechnol. 2022, 13, 610–619, doi:10.3762/bjnano.13.53

Graphical Abstract
  • Philipp Rahe Daniel Heile Reinhard Olbrich Michael Reichling Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany 10.3762/bjnano.13.53 Abstract In the mathematical description of dynamic atomic force microscopy (AFM), the relation between the tip–surface normal
  • interaction force, the measurement observables, and the probe excitation parameters is defined by an average of the normal force along the sampling path over the oscillation cycle. Usually, it is tacitly assumed that tip oscillation and force data recording follows the same path perpendicular to the surface
  • the tip movement can have critical consequences for data interpretation, especially for measurements on nanostructured surfaces exhibiting significant lateral force components. Inclination effects are illustrated by simulation results that resemble the representative experimental conditions of
PDF
Album
Full Research Paper
Published 06 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • interplanar spacing values are 3.5092 and 3.4619 Å, respectively. Thus, the orientation relationship between the matrix and twins is // and // The twinning effect in the brookite structure may be the major driven force of the phase transformation from the brookite NaxTi1−xO2 to Na2Ti6O13. Such transformation
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • the optical contrast, one can estimate that the thickness of the more transparent areas of the MoSe2 flake is smaller than that of other regions. To visualize the CuPc molecule distribution on the MoSe2 flake, atomic force microscopy (AFM) was used, and the results are shown in Figure 1b. The insets
  • images of CuPc/MoSe2. The topographic images of CuPc/MoSe2 are obtained with an atomic force microscope (Multimode 8-HR, Bruker) operated in peak force tapping mode using a SCANASYST-AIR probe (silicon tip on nitride lever, Bruker). Optical properties of a triangular MoSe2 flake covered with a thin film
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • unclear how mechanical properties regulate the cellular response to the environmental matrix. In this study, atomic force microscopy (AFM) and laser confocal imaging were used to qualitatively evaluate the relationship between substrate stiffness and migration of prostate cancer (PCa) cells. Cells
  • . Analysis of AFM force–distance curves indicated that the elasticity of the cells cultured on 35 kPa substrates increased while the viscosity decreased. Wound-healing experiments showed that PCa cells cultured on 35 kPa substrates have higher migration potential. These phenomena suggested that the
  • substrate stiffness and the mechanical properties of cells in prostate tumour metastasis, providing a basis for understanding the changes in the biomechanical properties at a single-cell level. Keywords: actin cytoskeleton; atomic force microscopy; migration; prostate cancer cells; substrate stiffness
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • array, as shown in Figure 5. The ability of microneedles to withstand the insertion force is crucial in topical and transdermal delivery systems [47]. Compressing the microneedles with a thumb press revealed no significant difference in the height of CIP_MN1 or CIP_MN2 before and after thumb press for
  • 30 s on excised human skin. This indicates that both microneedle formulations withstand the insertion force required for microneedle application on skin. We used thumb press to study the tensile strength of the microneedles since, previously, dissolving polymeric microneedles composed of PVA have
  • required insertion force in skin [51][52]. Microneedle dissolution in human skin The dissolution of CIP_MN1 in human skin showed a gradual decrease in the microneedle length with time. The microneedles required one hour for complete dissolution in the skin as shown in Figure 6. The dissolution of CIP_MN1
PDF
Album
Full Research Paper
Published 15 Jun 2022
Other Beilstein-Institut Open Science Activities