Search results

Search for "low power" in Full Text gives 86 result(s) in Beilstein Journal of Nanotechnology.

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • architectures were investigated [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33]. However, the bottleneck of these devices is still the low power conversion efficiency (PCE), which is currently not satisfactory for application. The highest reported value of PCE for perovskite solar cells based on
PDF
Album
Full Research Paper
Published 26 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • controlling the electrical current. NEM switches have attracted attention as low-power [1] devices, demonstrating abrupt on/off switching characteristics and minimized sub-threshold swing, as well as reduced leakage currents leading to improved on/off ratios [2]. In the context of existing
  • nm [82]). When the contact area becomes smaller than the mean free path of the electrons in the material, the electron transport enters ballistic conduction regime [83]. Nevertheless, typically, the metal–metal contact shows ohmic characteristics, which are preferable for low-power NEM switches, but
PDF
Album
Review
Published 25 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • through low-power light irradiation enables the conversion of the amorphous phase into nanocrystalline graphite. Moreover, the degree of graphitisation strongly depends on the substrate material [63]. Electrical transport characterisation The electrical resistances of the FEBID deposits were measured at
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
  • circuits keeps it at an acceptable level [45] below 3 A. Reciprocal quantum logic: RQL was proposed in about 2008. It was developed as an alternative to conventional RSFQ, and presented as “ultra-low-power superconductor logic” [46]. The main difference between RQL and RSFQ is the power supply scheme [47
PDF
Album
Review
Published 14 Dec 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • decomposition by microwave irradiation of the precursors in IL was achieved after only 10 min for Co(II) and 15 min for Fe(II), Eu(III) and Pr(III) using a low power of 50 W to give a temperature of 220 °C in the reaction mixture (Scheme 1). Black dispersions of nanocomposite materials were reproducibly
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging

  • Joseph R. Pyle and
  • Jixin Chen

Beilstein J. Nanotechnol. 2017, 8, 2296–2306, doi:10.3762/bjnano.8.229

Graphical Abstract
  • measurements Short videos of single YOYO–DNA molecules (≈200 frames) using 50 ms integration time and an electron-multiplying (EM) gain of 200 were obtained. To limit the effect of bleaching on the measurements, the sample was focused under illumination of a low-power 532 nm laser. Then the 532 nm laser was
  • to non-labeled DNA molecules. At a low power density, 1.9 W cm−2, almost the entire strand is visible at ≈35 s (Figure 8a). This limits PAINT from identifying single dyes (against the sparsity principle). Thus, the useful time range for PAINT is the first 15 s of data acquisition even though the
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2017

Functional materials for environmental sensors and energy systems

  • Michele Penza,
  • Anita Lloyd Spetz,
  • Albert Romano-Rodriguez and
  • Meyya Meyyappan

Beilstein J. Nanotechnol. 2017, 8, 2015–2016, doi:10.3762/bjnano.8.201

Graphical Abstract
  • nanomaterials (e.g., nanowires, nanotubes, graphene, metal oxides, carbon nanostructures, large band gap semiconductors, and metals) with new sensing properties (e.g., ppb-level detection, high sensitivity, selectivity) that are self-heating and provide durable operation for low-power devices (tens of μW to
  • faces a big challenge to create innovative, low-cost sensors for air-quality monitoring and energy systems applications. The development of functional nanomaterials with new, tailored properties is a key issue for the improvement of low-power devices for indoor and outdoor air-quality monitoring. This
  • based on smart materials with autonomous operation and low-power consumption are useful for real deployment and are complementary to the existing, high-cost, high-accuracy air-quality monitoring stations used by public authorities. These new, cost-effective sensor systems will be beneficial for the
PDF
Editorial
Published 26 Sep 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
  • a low-power broadband light source produce different backscattering spectra compared to normal cervical tissue in the visible wavelength range. Such difference in spectra detected by an optical sensor can be used in order to identify neoplastic lesions of the cervical epithelium. DRS is an indirect
PDF
Album
Review
Published 06 Sep 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • smaller and lighter radicals and ions are produced. These ions cause less damage compared to the larger ones produced in low power plasmas. Comparing the effect of the treatment duration, an increased production of defective sites is observed for short plasma treatment: under this condition a lower
  • fragmentation rate (Figure 2a). As a consequence, smaller and lighter radicals and ions reach the sample surface and a limited damage is revealed compared to the functionalization under low power conditions. The evolution of the D/G ratio for increasing exposure time at a fixed power can be explained assuming
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • portable user-friendly device with low power consumption. Our analysis was performed to verify whether S3 is able to distinguish between drinking and contaminated water. The concentration of pathogenic microorganisms in the contaminated sample is 500 CFU/mL (CFU = colony-forming units). Pathogenic
PDF
Album
Full Research Paper
Published 06 Jun 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • panel). The Raman spectra of the as deposited films (grey) were taken using a low laser power of 0.75 µW which leaves all tested MoS2 films unaffected. In situ laser annealing was undertaken by exposure to 3.5 mW laser irradiation for varying times in ambient atmosphere, followed by another low power
PDF
Album
Full Research Paper
Published 22 May 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • transistors can be operated electrochemically with gate voltages less than 350 mV. This makes copper atomic-scale transistor a good alternative candidate for the development of electronic circuits with low power consumption. Conclusion A copper atomic-scale transistor was fabricated on microelectrode chips in
PDF
Album
Full Research Paper
Published 01 Mar 2017
Graphical Abstract
  • advantages such as simplicity, repeatability, and low power consumption [5][6][7][8]. Despite many years of research, there are still a number of unsolved limitations to SnO2 resistive-type thin-film gas sensors, such as small sensitivity caused by low internal surface or very long response and recovery
PDF
Album
Full Research Paper
Published 27 Feb 2017

Tandem polymer solar cells: simulation and optimization through a multiscale scheme

  • Fanan Wei,
  • Ligang Yao,
  • Fei Lan,
  • Guangyong Li and
  • Lianqing Liu

Beilstein J. Nanotechnol. 2017, 8, 123–133, doi:10.3762/bjnano.8.13

Graphical Abstract
  • performance (especially, the low power conversion efficiency (PCE)) when compared with their inorganic counterparts. Therefore, great efforts have been devoted to improving the performance of polymer photovoltaics. To fulfil this goal, various methods, including annealing [1], active materials modification [2
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • by a factor of 10, which enables the use of low-power laser sources and pulses shorter than 20 ns, comparable to industry HAMR benchmarks [21]. Power requirements are further eased by using FePt recording media [24], designed for improved laser light absorption and lower operating temperatures
PDF
Album
Full Research Paper
Published 04 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • technologies, low power requirements, quick response times (seconds), high sensitivity to small concentrations of a specific gas, complete sensor recovery, lightweight, and long term stability. More recently, sensors were fabricated with reduced dimensions (miniaturization or microelectronic processing) [2][3
PDF
Album
Full Research Paper
Published 22 Dec 2016

Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

  • Oriol Gonzalez,
  • Sergio Roso,
  • Xavier Vilanova and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2016, 7, 1507–1518, doi:10.3762/bjnano.7.144

Graphical Abstract
  • low power consumption. The task of indoor and outdoor air pollution monitoring would certainly benefit from the implementation of grids of wireless sensing nodes [1]. In particular, radio frequency identification (RFID), has been identified as a widely extended technology in which the integration of
  • one or more gas sensors in a tag, would turn the tag into a wireless sensor that could be easily read with an inexpensive reader via a radiofrequency link [2][3]. Nowadays, distributed wireless boxes to monitor air pollution already exist. These employ electrochemical gas sensors that are ultra-low
  • power and very sensitive. However, such systems do not meet the requirements of personalized or indoor air pollution monitoring because of the high cost and size of the sensors. In environmental pollution monitoring, the detection of nitrogen dioxide is of particular interest because this pollutant is
PDF
Album
Full Research Paper
Published 25 Oct 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • . This is closely related to the increase of high-speed operation, good reliability, low power consumption and the decrease of unit price that led to the rapid development of the semiconductor device market and to the continuous downscaling of devices. Regarding the downscaling process, high mobility
PDF
Album
Full Research Paper
Published 21 Oct 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • ][6]. During the last decades, different types of sensors were fabricated for environmental and health monitoring. Among the different detection systems, chemical sensors based on metal oxide nanomaterials are highly demanded because of their high sensitivity, small size, low cost and low power
PDF
Album
Full Research Paper
Published 10 Oct 2016

Adiabatic superconducting cells for ultra-low-power artificial neural networks

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev and
  • Maxim V. Tereshonok

Beilstein J. Nanotechnol. 2016, 7, 1397–1403, doi:10.3762/bjnano.7.130

Graphical Abstract
  • , 124460, Russia 10.3762/bjnano.7.130 Abstract We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions
PDF
Album
Letter
Published 05 Oct 2016

Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

  • Qingxin Nie,
  • Zengyuan Pang,
  • Hangyi Lu,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2016, 7, 1312–1321, doi:10.3762/bjnano.7.122

Graphical Abstract
  • [15], acetone [16] and formaldehyde [17]. However, for most metal oxides, there is the drawback of a required high operation temperature, about 300 °C, which will increase the energy consumption [18]. Compared with metal oxides, sensors based on conducting polymers show low power consumption and can
PDF
Album
Full Research Paper
Published 19 Sep 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • attractive than conventional devices [9]. The advantages include high sensitivity, high stability, fast detection and recovery, low power consumption, relatively low cost, and small size [9][10]. These advantages enable semiconducting metal oxide sensors to be implemented on integrated circuits for portable
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

  • Liz M. Rösken,
  • Felix Cappel,
  • Susanne Körsten,
  • Christian B. Fischer,
  • Andreas Schönleber,
  • Sander van Smaalen,
  • Stefan Geimer,
  • Christian Beresko,
  • Georg Ankerhold and
  • Stefan Wehner

Beilstein J. Nanotechnol. 2016, 7, 312–327, doi:10.3762/bjnano.7.30

Graphical Abstract
  • the setup. The LIBS setup arrangement consisted of a pulsed laser source, focusing optics, and Czerny–Turner spectrometers. As laser source a low-power passively Q-switched Nd:YAG laser (CryLas, model DSS1064-3000) at a wavelength of 1064 nm, a pulse energy of 2.5 mJ, a pulse duration of 2 ns (FWHM
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
PDF
Album
Review
Published 10 Dec 2015
Other Beilstein-Institut Open Science Activities