Search results

Search for "magnetic field" in Full Text gives 297 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • is described by the LLG equation [26]: where M is the magnetization vector, γ is the gyromagnetic relation, Heff is the effective magnetic field, α is the Gilbert damping parameter, and M0 = |M|. In order to find the expression for the effective magnetic field we have used the model developed in [6
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • measurements at temperatures from 4.2 to 300 K, the films under study were mounted to the cold finger of the Janis ST-500 helium-flow cryostat. Permanent NdFeB magnets were fixed there, creating a magnetic field directed along the easy axis of the thin film in its plane with a magnitude of 470 Oe at room
PDF
Album
Full Research Paper
Published 25 Aug 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • tunnel junctions was measured as a function of the bias voltage V using standard low-frequency lock-in techniques in a dilution refrigerator at base temperatures down to T = 50 mK with an in-plane magnetic field B applied along the direction of the copper wires, as indicated in Figure 4. Details of film
  • angle extracted from the fits is plotted in Figure 5b. It is found to depend on the applied magnetic field over the entire field range. In contrast, the EuS magnetization is saturated above a few milliteslas in our film [42]. A similar dependence of the spin splitting on the applied field is commonly
  • states in an external magnetic field was observed. To reproduce the experimental data, we have determined the spin mixing angle as a function of the applied magnetic field, and given an estimate on how to take into account the relation between the external field and the spin mixing angle. We are thus
PDF
Album
Full Research Paper
Published 20 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • . TM polarized (the magnetic field is along the direction of the y-axis) monochromatic plane waves are incident from the substrate at an angle θ. In our simulation, we set d = 3.3 μm, w = 2.31 μm, h = 3.5 μm, nh = 3.48, ns = 1.45, and θ = 0.1°. The surface conductivity of graphene has intraband and
PDF
Album
Full Research Paper
Published 19 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • -dimensional free convective hybrid nanofluid (Fe3O4 + MWCNT/H2O) stream over a resilient cylinder under the influence of a light magnetic field. The heat transportation problem was resolved by combining two methods (FEM and FVM) and an understanding that the temperature near the wall escalated due to an
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • example). The control of the spin valve is operated by turning the FM layers into states with parallel (P) and antiparallel (AP) mutual orientations of their magnetizations. This process can be realized by application of the finite external magnetic field or by injection of the spin current due to the
  • magnetic field strength of the order of 30 Oe. Note that after the control current is turned off, the valve remains in the open/closed state, since the direction of magnetizations in the FM layers is preserved. The current-carrying layer is a thin strip of normal metal with thickness dN = 2ξ and small
PDF
Album
Full Research Paper
Published 18 May 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • density, and the configuration of the magnetron magnetic field (balanced/unbalanced). The geometry of the deposition apparatus, that is, how the substrates are arranged inside the vacuum chamber with respect to the sputtering source, also plays an important role. Among other things, it is possible to
  • typical and reveals features of the theoretical cosine distribution, despite some decrease at 40–45 mm from the axis of the target. This may be an effect of the distribution of the magnetic field of the magnetron source. The front-side film had a thickness of 650–850 nm in the on-axis geometry region and
PDF
Album
Full Research Paper
Published 31 Mar 2022

Controllable two- and three-state magnetization switching in single-layer epitaxial Pd1−xFex films and an epitaxial Pd0.92Fe0.08/Ag/Pd0.96Fe0.04 heterostructure

  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Gulnaz F. Gizzatullina,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2022, 13, 334–343, doi:10.3762/bjnano.13.28

Graphical Abstract
  • .13.28 Abstract We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of
  • necessary to find the particular angle of the applied magnetic field direction with respect to the in-plane four-fold easy axes. Once the conditions of magnetization rotation by 90° are found, the addition of the second, magnetically more hard ferromagnetic layer with properly aligned in-plane easy axes
  • Pd0.92Fe0.08 film at different in-plane orientations of the magnetic field was studied by measuring the anisotropic magnetoresistance (AMR) using the four-probe method. For this purpose, the Pd0.92Fe0.08 film was cut with a diamond saw into stripe-like pieces. In the first sample the current flowed along the
PDF
Album
Full Research Paper
Published 30 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • circular copper target (99.995%). All three targets were sputtered simultaneously in an oxygen atmosphere of 99.999% purity. The targets used in the process were 28.5 mm in diameter and their thickness was 3 mm. The process uses magnetrons with an unbalanced magnetic field set in a confocal configuration
PDF
Album
Full Research Paper
Published 24 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • MRI imaging, targeted drug delivery and hyperthermia therapy [8][9]. Hyperthermia therapy can be achieved by using either magnetic fields or NIR irradiation. Application of an external alternating magnetic field on these nanoparticles leads to the production of heat to mediate magnetic hyperthermia
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • facilitate membrane removal by an external magnetic field. As summarized in Table 1, different nanomembranes have been fabricated via electrospinning and electrospraying to be used as adsorbent membranes to remove metal ions and organic dyes. The polymers used for the fabrication of adsorbant membranes along
PDF
Album
Review
Published 31 Jan 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • patterns, recorded in static XMCD-PEEM imaging before and after excitation of the sample by a single laser pulse in absence of any magnetic field reveals the lateral distribution of optically switched areas. Figure 1 presents an example. Figure 1a and Figure 1b show the domain structure before and after
  • magnetic circular dichroism (XMCD) at the Gd M5 absorption edge at 1182.6 eV photon energy was used as magnetic contrast mechanism. A small electromagnet mounted inside the sample holder allows for applying a magnetic field to the sample for demagnetizing or creating domains. Before the start of each
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • the target, to generate a magnetic field in the target vicinity thus promoting magnetron sputtering (MS) cathode systems. Typical MS cathodes consist of a magnet placed at the center of the target and magnets with opposite poles on the target periphery. This configuration is schematically presented in
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • an alternating magnetic field of moderate frequency, f = 300 kHz, and amplitude H0 = 100–200 Oe is shown to decrease significantly with an increase in the aspect ratio of nanoparticles. In addition, there is a narrowing and shift of the intervals of optimal particle diameters towards smaller particle
  • sizes. However, the orientation of a dilute assembly of elongated nanoparticles in a magnetic field leads to an almost twofold increase in SAR at the same frequency and amplitude of the alternating magnetic field, the range of optimal particle diameters remaining unchanged. The effect of the magneto
  • use in biomedicine, in particular, in magnetic hyperthermia [1][2][3][4], a new promising approach for cancer treatment. In this method, magnetic nanoparticles introduced into a tumor and excited by an alternating (ac) low-frequency magnetic field are able to warm up malignant tissues locally. In most
PDF
Album
Full Research Paper
Published 28 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • excellent magnetic, colloidal, cytotoxic, and biocompatible aspects. However, detailed mechanistic, in vivo cytotoxicity, and magnetic-field-assisted studies are required to fully exploit these nanocarriers in therapeutic applications. Keywords: anticancer drugs; doxorubicin; drug carriers; in vitro
  • permeability and retention (EPR) effect [7]. Magnetic nanoparticles (MNPs) have gained significant attention as effective drug delivery systems due to their distinct physiochemical attributes, high surface-to-volume ratio, and the possibility of surface functionalization [8]. Furthermore, magnetic-field
  • by iron, nickel, and zinc ferrite. Furthermore, PMA-coated nanoparticles exhibit a small change in saturation magnetization, which is still enough to manipulate NPs using an external magnetic field [28]. The uniform size distribution of MFe2O4 (M = Fe, Co, Zn, Ni) NPs was confirmed by agarose gel
PDF
Album
Full Research Paper
Published 02 Dec 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • increases, and for 20 K, in the general case, Equation 1 becomes invalid, that is, the dynamics of the spatial distribution of the phase and the magnetic field inside the junction becomes important [39][40][41]. In the case of long JJs it is necessary to consider the sine-Gordon equation, taking into
  • account the non-uniform distribution of currents flowing through the barrier, which is typical for bicrystal junctions [28][42][43]. However, if the junction length is of the order of the kink size and there is no external magnetic field, the long junction dynamics is close to that of a short one [39] and
PDF
Album
Full Research Paper
Published 23 Nov 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • consisting of CoFe2O4 nanoparticles dispersed in PVDF-TrFe with enhancement of the β phase alignment through an applied DC magnetic field. The magnetic poling was demonstrated to be particularly effective, leading to a piezoelectric coefficient d33 with values up to 39 pm/V. This type of poling does not need
  • with zinc oxide nanostructures [1][3][5][6]. Recently, it was shown that the β phase content of PVDF can be improved introducing CoFe2O4 nanoparticles into the polymer and applying a DC magnetic field [25]. This effect has been ascribed to the strong tensile stress at the CoFe2O4/PVDF interfaces
  • originating from the interaction between the magnetic field and the CoFe2O4 nanoparticles. As a result, a very high β phase content (up to 95%) has been measured in the PVDF nanocomposite with 5 wt % CoFe2O4. However, the authors limited the analysis to the β phase content and it was not clear if the β phase
PDF
Album
Full Research Paper
Published 19 Nov 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • computing; devices exploiting spin polarized transport or integrated magnetic field; spin-valve; superconducting multilayers; superconducting spintronics; Introduction Competition between spin-polarized ferromagnetism and spin-singlet superconductivity leads to a variety of interesting phenomena including
  • experimental setup and sample fabrication and characterization can be found in [23][34] and [43], respectively. Resistances are measured by the lock-in technique with different current amplitudes Iac. In all cases, the magnetic field is applied parallel to the film plane in the orientation sketched in Figure
  • thinner S′ (6 nm) is smaller than that of the S1 ML with S′ (8 nm). Figure 1e shows Rxx(T) curves for a horizontal bridge at the S1 sample at four sequentially increasing magnetic field strengths (hard axis orientation) and Iac = 1 mA. It is seen that the onset of resistivity at T ≈ 7.3 K is affected by
PDF
Album
Full Research Paper
Published 17 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • temperature, pH, enzyme, redox potential, ionic strength, or solvent composition of the media. Other stimuli are external, such as heat, light, electric field, magnetic field, or ultrasound (US) [5][6][7]. Designing such single, dual, or multi-stimulus-responsive smart delivery vehicles provides an
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • /nanorobots are explored. Review External field actuation Magnetic field actuation In recent years, the development of magnetic field-actuated micro/nanorobots has become increasingly mature. Back in 2005, Dreyfus et al. [17] created a micro/nanorobot actuated by a variant magnetic field. By applying a
  • constant magnetic field along the horizontal direction of the robot and an oscillating magnetic field perpendicular to the robot, the robot can make a motion similar to the motion of cilia in microorganisms. The success of this research laid the foundation for future research. Steager et al. [18] proposed
  • a magnetically actuated robotic system capable of fully automated manipulation of cells and microbeads and prepared a magnetic U-shaped robot, which was actuated with five electromagnetic coil controllers to generate a gradient magnetic field. In order to prepare a magnetic U-shaped robot, magnetic
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • used in medical MNRs [26]. For example, based on the combination of copolymer brushes and superparamagnetic nanoparticles, a biomimetic nanoreactor was proposed. It contained a magnetic field-responsive catalytic system, namely magnetic field-responsive binary deoxyribozyme (MaBiDZ) [27]. Also, it
  • -dimensional Helmholtz coil control system was used to form a rotating magnetic field in three dimensions. A change in the direction of the magnetic field exerted a magnetic moment to steer the magnetic structure. Compared with the traditional straight helical structure for MNRs [28], the conical helical
  • same time, a change of the magnetic field gradient and direction can be used to accurately guide magnetic microstructures. However, these structures often have some shortcomings and limitations. Different magnetic drive structures show different characteristics. Research is needed to continuously
PDF
Album
Review
Published 19 Jul 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • eligible for the targeted delivery of the drug-loaded particles to the tumor mass via an external magnetic field [2]. Furthermore, MNPs are promising biosensors [3] and antimicrobial tools [4], and they play an important role in the development of multifunctional theranostics to combat cancer [5]. MNPs are
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • the major defect centers and give an EPR signal around g ≈ 1.96 [2][3][4][5]. Compared to ge ≈ 2.0023, this resonance requires a higher magnetic field and, thus, a higher microwave frequency. In other words, higher microwave and Zeeman energy are required for this kind of allowed electronic transition
PDF
Album
Review
Published 13 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • of free MnFe2O4 nanoparticles at 300, 77, and 4 K. The inset shows as enlarged view of M–H loops. (b) Magnetization measurements under ZFC and FC conditions in an applied magnetic field of 50 Oe. (a) Dark-field STEM image. (b) Bright-field STEM image. (c) Annular dark-field image. EDS mapping of (d
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020
Other Beilstein-Institut Open Science Activities