Search results

Search for "mechanism" in Full Text gives 1094 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • and CD91 for Hpx, and taken up by phagocytes (e.g., Kupffer cells in liver sinoids), where Hb or heme are subsequently degraded. If this mechanism cannot be bypassed, Hp and Hpx must be fully saturated to achieve and maintain the effect of the HBOCs. Here is an example calculation with commercially
  • also in line with previous research. In several other studies, using various other HBOCs, a direct Hb–CD163 interaction was observed [5][27][39]. However, the blockade of CD163 could not completely inhibit the uptake of HbMPs, which suggests the existence of at least one further mechanism for HbMP
  • in the uptake of HbMPs. Further research on this topic will be conducted in the future. To be considered as well is a possible mechanism leading to particle uptake by phagocytes based on the particle size. Our own results regarding PMMA-FluoroGreen-COOH particles (microparticles GmbH, Berlin, Germany
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • responsivity, photoconductive gain, detectivity, and sensitivity with maximum values of 1.38 A·W−1, 4.33, 2.58 × 1011 Jones, and 1934.5% at a bias of 2 V, respectively. The sensing mechanism of the p–n heterojunction of CuO/ZnO is also explored. Overall, this study indicates that the heterostructure of CuO
  • toxic, extending its applicability in everyday life. Proposed photodetection mechanism Under dark conditions (Figure 7a), highly electronegative oxygen molecules from the surrounding atmosphere adsorb on the surface of ZnO NRs. These molecules capture the free electrons from ZnO NRs and become
  • on CuO NPs/ZnO NRs as functions of the wavelength. The scheme shows the mechanism for generating the photodetector current in CuO NPs/ZnO NRs under (a) dark conditions and (b) visible-light exposure. The performance comparison with other ZnO-based photodetectors. Supporting Information Supporting
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • capabilities of these fibers are significantly diminished once a crack permeates the skin [11][13][16]. This interface appears to be another mechanism that leads to a somewhat brittle failure in Kevlar®, resulting in a distribution in single-fiber tensile strengths. In contrast, the lack of skin–core
PDF
Album
Full Research Paper
Published 05 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • optimizing the nanoarchitectonics of nanomaterials to achieve superior light-to-heat conversion. We have briefly explained different photothermal nanomaterials, including noble metals, carbon-based materials, polymeric nanomaterials, and semiconductor materials, with their respective mechanism responsible
  • , vol. 7, issue 6, © 2014, permission conveyed through Copyright Clearance Center, Inc. This content is not subject to CC BY 4.0.) Non-radiative mechanism in 2D semiconductor (C). (Figure 4B and C was reproduced from [38] (© 2020 Z. Xie et al., published by WILEY-VCH Verlag GmbH & Co. KGaA, distributed
PDF
Album
Review
Published 04 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • fragmentation arises from a resonant mechanism known as dissociative electron attachment (DEA) producing exclusively a negative fragment ion and one or more neutral counterparts, as it will be discussed below. The contribution of each of the processes may depend on the nature of the organometallic precursors
  • represent a metal (Mn, Co, Ni, Cu, and Zn) and the acetylacetonate ligand, respectively. Previous reports were only dedicated to the mechanism and the energetics for the production of the two predominant species, that is, the parent [ML2]− anion and the ligand [L]− anion [15][16][17][18][19]. In addition to
  • TNI decomposition [23]. ML2 compounds usually possess high dipole moment, quadrupole moment, and/or polarizability [15][16][17][18][19], which allow this mechanism to occur. All these processes are involved in the yield functions reported below in Figures 1–6. At first glance, the formation of the
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • fabrication; the resulting composition seems to arise from Si and P supersaturation levels [3][4]. The formation of precipitates in supersaturated silicon has also been considered as a possible mechanism involved in the deactivation of dopants [5][6][7]. To date, Si3P4 compounds have not been experimentally
  • penetration into Si NPs, in which the process was modeled as diffusion doping, samples consisted primarily of the new compound of cubic Si3P4. This fact revealed that the mechanism of Si3P4 formation may differ. For example, one might suppose that the amorphous Si layer, present in the nanocrystalline
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • mechanism of CO2 on MOFs featuring OMSs. Wu et al. revealed that the interactions between the OMSs of Mg-MOF-74 and HKUST-1 and CO2 molecules are primarily of physical nature [24]. This type of adsorption mechanism offers the advantage of low energy requirements in material regeneration. Another significant
  • contribution in the field of mechanism studies was made by Valenzano and coworkers [25]. The recorded an adsorption angle of 129° for CO2 adsorption on Mg-MOF-74, which is smaller than the corresponding angles observed for N2 and CO, implying a stronger interaction between Mg-MOF-74 and CO2 (Figure 1). MOFs
PDF
Album
Review
Published 20 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • deposition mechanism has changed. The thickness trend shows that the deposition seems to be inhibited in the initial phase as t0 rises significantly above 0. The assumed linear relationship has been plotted in Figure 3 for each deposition temperature. The calculated inhibition times are 13.2 min for 100 °C
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • superiority of the RF model to other models. Figure 5 presents the cross-validation statistics based on 20 times fivefold repetitive CV and 1000 times shuffle split CV on R2 and MAE for the developed ML model. General mechanism of toxicity In the process of screening all descriptors from different ML methods
  • toxicity through an ionic mechanism followed by the generation of reactive oxygen species (ROS). Another, biomarker for ROS is lipid peroxidation [38] as free radicals cause lipid peroxidation inside the cell membrane. The catalytic properties of the metals are also responsible for an increased toxicity of
  • the previous work. Conclusion We have performed cytotoxicity modeling of eight heavy metal compounds adsorbed on nanoscale TiO2 regarding HK-2 cells and explored the features responsible for the toxicity mechanism. Many studies have examined the co-exposure of metal and metalloid mixtures with heavy
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • presented. Finally, we present the potential pathways and current problems in progressing MOF-based nanomaterials for CO2 conversion. Review Mechanism of CO2RR The process of CO2 reduction consists of three steps. First, the CO2 molecules are adsorbed on the active sites of catalysts. Second, charge
PDF
Album
Review
Published 31 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • accommodated at the center of the hexagons (Figure 7f,g). Thus, the alkyl chain length affected the formation of porous or non-porous structures, whereas the incorporation of guest molecules changed the 2D assemblies, possibly due to the induced fit mechanism. Multicomponent assemblies owing to matching sizes
  • (CC15–CC15) and heterogeneous (OC15F–CC15) dimers were clearly ascertained. This identification by STM and DFT calculations enabled the authors to propose a mechanism for a 2D structural diversification of the bicomponent blend. 7.3 Alkyl chains of solvent molecules Co-adsorption of the solvent can
PDF
Album
Review
Published 23 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • unexplored [3]. Uncovering this water repellence mechanism led to a revolution in the development of such surfaces, which promise huge potential for inspiration for technical innovations and applications. In 2022, we celebrated the 25th anniversary of this significant botanical publication, which was an
PDF
Album
Editorial
Published 03 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • feature that mimics the sensitivity of sound signals of different frequencies in the human ear, based on the hearing mechanism. Extracting MFCC features is useful for modeling heart sound signals. The wavelet feature extraction method uses “db6 wavelet decomposition” to generate seven feature vectors. The
PDF
Album
Full Research Paper
Published 31 Jul 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • geometrical information, and the exponent n is the diffusional or transport exponent, that provides information about the release mechanism. However, it can also be viewed as a generalization for the explanation of two different drug release mechanisms that could coexist [34]. The mechanism that dominates the
  • maximal accumulated release above 74% during 24 h. The release profile was adequately fitted to the Korsmeyer–Peppas model with an estimated release exponent of 0.56, suggesting a mixed mechanism of release with a dominant Fickian behavior. In vitro experiments on T. cruzi trypomastigotes and amastigotes
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • particles. The electric field is enhanced, and the Raman enhancement factor (EF) can reach 106 [6]. The induced amplification of the local field by plasmonic coupling occurs in nanometer-scale regions around the metal particles, the so-called electromagnetic “hot spots”. The chemical mechanism suggests the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • antibacterial agents. One of the advantages of AgNPs over bulk metal or salts is their ability to controllably release silver as ions or particles, resulting in prolonged protection against bacteria [20]. While the specific mechanism of their antibacterial properties is not fully understood, mechanisms such as
  • antibacterial properties can serve as a source of silver ions. Another mechanism involves the electrostatic attraction between negatively charged microbial cells and positively charged AgNPs [25]. Because of their affinity to sulfur proteins and through electrostatic attraction, silver ions can bind to both
  • agents [33]. The efficiency of the catalyst can be improved by studying different carrier materials [34][35]. Interface factors, including morphology and capping agents, play a significant role in the catalytic activity of AgNPs. The ionotropic gelation mechanism has been recently employed to create
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • was to test whether carboxylic acids stabilize or accelerate nanoceria dissolution in acidic aqueous environments and determine the mechanism of dissolution depending on the molecular structure of each ligand relating to agglomeration or stabilization. In addition, the influence of ambient laboratory
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • widely accepted vapor–liquid–solid mechanism, the growth of CNTs occurs in three steps, namely, melting of nickel particles, adsorption of carbon atoms onto the surface of the metallic nickel, and finally, diffusion and deposition of the precipitated carbon, which forms tubular materials by curling of
  • arrangement and grow vertically from the substrate [20]. Said growth model is similar to the mechanism proposed by Baker and co-workers [21][22][23]. At elevated temperatures, catalytic particles are formed on the substrate surface, and hydrocarbon molecules that undergo cracking in the flame diffuse to the
PDF
Album
Full Research Paper
Published 21 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • photocatalysis mechanism outlining several possible targets (i.e., NOx degradation, water splitting, degradation of organic pollutants, and enhancement of electron generation in a solar-cell application). This Thematic Issue highlights recent experimental and theoretical developments in using light harvesting by
  • Wee-Jun Ong Ho Chi Minh City and Sepang, June 2023. A general photocatalytic mechanism for several possible target processes: (1) NOx degradation, (2) water splitting for hydrogen and oxygen evolution reactions, (3) degradation of organic pollutants, and (4) solar cell application. Acknowledgements
PDF
Album
Editorial
Published 13 Jun 2023

Current-induced mechanical torque in chiral molecular rotors

  • Richard Korytár and
  • Ferdinand Evers

Beilstein J. Nanotechnol. 2023, 14, 711–721, doi:10.3762/bjnano.14.57

Graphical Abstract
  • depends on the impact velocity very weakly in the given range. Actually, it increases with decreasing impact velocity (see Figure 8. This is the mechanism of angular boosts studied in the previous section. (2) For nonzero ρF, the collision causes a net torque, the helix always accelerates. In the limit of
  • large impact velocities the switching due to angular momentum boosts overtakes and the threshold Im drops inversely proportional to . This regime is the familiar garden hose effect. To take a closer look at the mechanism of angular momentum boosts, we have plotted the threshold momentum current Ip for
PDF
Album
Full Research Paper
Published 12 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • surface (Figure 3c), H+ hopping between neighbouring OH− sites on the nanowire surface can be activated, which is an alternative conduction mechanism [29]. This ionic transport on the surface can compensate for the decrease of electronic transport conductivity inside the material. Since water
  • formation of additional physisorbed H2O layers through hydrogen bonding (Figure 3e). The conduction process occurs by the Grotthuss mechanism [29][33][34] of H+ hopping through the network of H2O molecules on the surface (H3O+ + H2O ↔ H2O + H3O+). Higher humidity causes increased concentration of H+ and
PDF
Album
Full Research Paper
Published 05 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • resonance, this review will exclusively concentrate on the luminescence (particularly fluorescence) sensing mechanism. The basis for optical sensing is the luminescence mechanism, which is the spontaneous emission in the optical range of ultraviolet, visible, or infrared light by a substance without being
  • excitation, for photoluminescence to occur, whether it be fluorescence or phosphorescence. The molecule-bound electron in the fluorescence mechanism absorbs a photon and is activated after the analyte interacts with the molecular recognition element. The transition from the ground state (S0) to the excited
  • on an energy transfer mechanism in the sensing system. A water-stable two-dimensional lanthanide-based MOF (Ln-MOF) was synthesised by Ren et al. [38] in a different study to serve as a reversible luminescent sensor for the detection of sulfamethazine (SMZ) antibiotics. According to the authors, the
PDF
Album
Review
Published 01 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • . The second mechanism involves structures manipulating the water flow (e.g., setae and tentacles) that redirect the food particles and lead them to specialized structures that contact and capture them. A good example for the latter mechanism are the filtering setae of crustaceans (for in-depth reviews
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • provide locations for the deposition of Zn2+ via electrostatic interactions. Cao et al. [26] have reported the growth of ZnO particles on MWCNTs through a similar mechanism. However, in their case, the functional groups on the MWCNTs were obtained by ultrasonic treatment in concentrated nitric acid. Four
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023
Other Beilstein-Institut Open Science Activities