Search results

Search for "nanostructures" in Full Text gives 749 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors. Keywords: smart nanomaterials; sonodynamic
  • , minimizing toxicity, ensuring biodegradability, biosafety, and efficacy, and guarding against long-term carcinogenesis [2]. Although animal models cannot accurately simulate every single aspect of human disease, in vivo therapeutic evaluation of these smart nanostructures for drug delivery is important
  • , dendrimers, and capsules), lipid-based carriers (including liposomes and solid lipid NP), and non-polymer-based structures (including nanomachines, gold NPs, titanium, carbon, and silica nanostructures) along with some other novel NPs which can trigger drug release after US activation. A discussion on these
PDF
Album
Review
Published 11 Aug 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • Thies H. Buscher Stanislav N. Gorb Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany 10.3762/bjnano.12.57 Abstract Adhesive pads are functional systems with specific micro- and nanostructures which evolved as
  • principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the
  • adapted to locomotion across different terrains [39][52]. Even without morphological specialities, like jumping or digging, legged motion is very diverse. Some groups specialized in their micro- and nanostructures towards very specific substrates: Water striders, for example, run on the water surface [53
PDF
Album
Review
Published 15 Jul 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • et al., “Outputting Olfactory Bionic Electric Impulse by PANI/PTFE/PANI Sandwich Nanostructures and their Application as Flexible, Smelling Electronic Skin”, Advanced Functional Materials, John Wiley and Sons. (i) The output voltage of smelling electronic skin as the ethanol concentration increases
PDF
Album
Review
Published 08 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • PbZr0.2Ti0.8O3 thin films at doses of 0.22 × 1015 to 1 × 1015 ions/cm2 has been demonstrated, and through site-selective direct-write patterning with variable dose, various nanostructures with novel ferroelectric-switching functionalities have been fabricated [33] (Figure 2f). Using similar doses, out-of-plane
  • were so low, the change in optical properties was attributed to the local accumulation of defects (as opposed to collisional phase mixing). In a plasmonic application, resonant triangular nanostructures were created in a graphene sheet supported on SiO2/Si by selectively irradiating the graphene in the
  • regions around the intended structures (note, the graphene was not milled away) [62]. Tuning of the resonant behavior of the nanostructures was demonstrated by adjusting the irradiation dose. Closely related to the electronic property tuning of 2D transition metal dichalcogenides described earlier
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • circuit including a white LED was utilized. Results and Discussion To determine the morphology, the as-prepared silver nanostructures were first characterized by UV–vis absorption spectroscopy. The absorption spectrum of AgNWs is a function of the dielectric material, the chemicals used, and the particle
  • second peak at 373 nm is attributed to the longitudinal plasmon resonance of AgNWs. It is also noted that no other peak was observed, which shows that the final product was free from contamination of any other nanostructures, such as silver nanoparticles or nanocubes. The SEM results also confirm the
  • results. The photoluminescence spectra of silver nanostructures greatly depend on size and shape of the nanostructures. The PL spectrum in the visible region is associated with deep holes. These deep holes cause green, red, and yellow emissions, whereas shallow holes produce blue and violet emissions
PDF
Album
Full Research Paper
Published 01 Jul 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • morphology substantially modify graphene properties. A novel approach of graphene-based nanostructures are van der Waals heterostructures in which graphene is transferred onto another material with a different morphology and electronic properties [5]. However, in those kinds of structures several aspects
PDF
Album
Full Research Paper
Published 22 Jun 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • for graphene and MoS2-based electronics utilising the small lattice mismatch, the large optical phonon modes, and particularly the large bandgap [3][4][5][6][7][8][9][10]. Furthermore, when grown on metal substrates h-BN can be used as a nanoscale template for atoms, molecules, and nanostructures with
  • and no buckling of the substrate and, thus, to high stiffness. Furthermore, our results corroborate that h-BN/Cu(111) has a small corrugation of 0.6 ± 0.2 Å but is mechanically stiff making it an appealing platform for studying intrinsic electronic and mechanical properties of nanostructures
PDF
Album
Letter
Published 17 Jun 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • during heating [15][16]. Pt nanoparticles have better light and thermal stability then Au nanoparticles [17]. Au–Pt bimetal nanoparticles may not only further enrich the functions of nanostructures, but the spatial distribution of both elements also plays an important role in adjusting the properties
  • synthesize Au–Pt bimetal nanoparticles with LSPR bands in the near-infrared (NIR) region [22][23][24][25][26][27]. Feng et al. developed a simple room-temperature procedure to form rod-shaped Au@Pt nanostructures, where tiny Pt nanodots are distributed homogeneously on the surface of the AuNRs [25]. Rong et
PDF
Album
Full Research Paper
Published 17 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • sample stored at 4 °C leading to an overlap, which indicates size and shape stability of the nanoparticles [48]. Dynamic light scattering: Historically, the first approaches to describe interactions between light and nanostructures were published in the early 20th century. Currently, the most popular
  • ) planes, respectively [158]. Powder XRD is effective in studying the crystalline structure of heterogeneous nanoparticles and nanostructures [159]. As the 2θ angle increases, the phase difference between two progressive waves also increases and the scattering intensity decreases [159]. Nanoparticles with
PDF
Album
Supp Info
Review
Published 14 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • cycle of Co3O4 electrodes and it has been frequently reported for Co3O4 nanostructures with various shapes [15][21][23][24][25][26][27][30][31][34][36]. This capacity fade is usually ascribed to an irreversible electrolyte decomposition, the formation of the SEI layer, and the formation of stable Li2O
  • nanomaterial possessed a very low surface active area, in comparison with previously reported Co3O4 nanostructures tested as anode materials, it exhibited a relatively high specific capacity of 1060 mA·g−1 measured at 100 mA·g−1 after 100 cycles and a remarkably good cyclability tested at current densities
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • modulates the geometry of the nanostructures. The Mn–Ge alloy nanowires are single-crystalline structures with homogeneous composition and uniform width along their length. The shape evolution towards nanowires occurs for islands with a mean size of ≃170 nm. The wires, up to ≃1.1 μm long, asymptotically
  • tend to ≃80 nm of width. We found that tuning the annealing process allows one to extend the wire length up to ≃1.5 μm with a minor rise of the lateral size to ≃100 nm. The elongation process of the nanostructures is in agreement with a strain-driven shape transition mechanism proposed in the
  • electron beam. Results and Discussion High-temperature annealing of the evaporated Mn thin films on Ge(111) results in a significant change of the film morphology with the appearance of nanostructures onto the surface. The features of the structures are related to the Mn layer thickness and the duration of
PDF
Album
Full Research Paper
Published 28 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • nanoparticles loaded with graphene have an enhanced acetone response at 350 °C with increased graphene loading level (best at 5 wt % graphene) [40]. ZnO nanostructures doped with nickel and rGO were used for hydrogen sensing at 100 °C [34]. The decoration of MOS with a noble metal, such as Pd or Pt, improves
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron
  • cleavage of C–H bonds and the subsequent formation of new C–C bonds between neighboring molecules also seems to play a crucial role in the EBISA process. Previous studies showed that iron nanostructures fabricated on top of a cross-linked SAM on Au/mica can be transferred to solid substrates and grids
  • reduction of the iron structures. These results demonstrate that the fabrication of hybrids of metallic nanostructures onto organic 2D materials is an intrinsically complex procedure. The interactions among the metallic deposits, the substrate for the growth of the SAM, and the associated etching/dissolving
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • combined in a straightforward manner, for example, by stacking. Applications of such materials may rely on (coupled) material excitations, such as plasmon polaritons in gold nanostructures [2], on physical properties, such as the exceptionally high mechanical stability of suspended graphene [3], or on
  • ubiquitous in ion beam machining with well-established applications in material characterization, for example, TEM lamella fabrication, cross sections or tomographies [19][20], or in the fabrication of prototype nanostructures, such as plasmonic antennas [2]. In contrast, appropriate fields of application
  • and gold flake (cf. Supporting Information File 1, section “Challenges in the patterning of the plasmonic tetramers”). Nevertheless, we show here, for the first time, high-fidelity patterning of plasmonic nanostructures with geometrical details as small as 3 nm. This is mainly achieved by defining a
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • nanostructures [1][2][3][4]. This mask-less nanofabrication technique uses gaseous molecules as precursors. The gas molecules are introduced in the specimen chamber of a scanning electron microscope (SEM), adsorb onto a substrate, and dissociate upon electron irradiation, leaving a solid deposit on the substrate
  • the deposit. A major challenge is therefore to achieve control over the composition of the deposited material through a proper design of the precursor molecule [17][18]. Gold deposition has been one of the earliest interests in FEBID [19], as gold 3D-nanostructures can find a wide range of
  • demonstrated that the presence of alkyl ligands in gold FEBID precursors has a highly positive effect on the stability of the compounds [33][34] and can lead to a satisfactory purity of the obtained nanostructures (19–25 and 29–41 atom % Au, respectively) [32]. The most recent organometallic gold complexes
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • ; iron phthalocyanine (FePc); scanning tunneling microscopy; self-assembly; Introduction The development of molecular circuitry requires the preparation of nanostructures isolated from the influence of the underlying substrate. This is of crucial importance for atomic and single-molecule prototypes, but
  • holds also for layered materials. Single-molecule prototypes or molecular nanostructures are often prepared on metals, which usually provide a sufficiently low diffusion barrier for efficient self-assembly and simultaneously allow for in-depth analysis through atomically precise tools from the family of
  • creation of unsaturated dangling bonds (DBs) or DB systems with predesigned architecture [30][31]. In such a way, different atomic nanostructures could be fabricated in a controllable manner; artificial molecules [32] or surface logic gates [33] could act as examples. Further, such nanostructures may be
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • observed. The findings boost progress toward template-directed nucleation, growth, networking, and charge state manipulation of functional molecular nanostructures on surfaces using operando techniques. Keywords: atom manipulation; scanning tunneling microscopy; supramolecular self-assemblies; titanium
PDF
Album
Full Research Paper
Published 16 Feb 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • coatings, albeit only a few nanometers thick, can significantly alter and conceal fine details of biological nanostructures [2], which is noticeable in SEM images of virus particles [19][24]. Since in the HIM positive charge accumulates on insulating samples, a low-energy electron flood gun can be used for
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • Riedel et al. [16] developed several techniques of electrostatic force microscopy (EFM) to extract the relative permittivity at the nanoscale, allowing for new fields to be explored. Here we use EFM to map the relative permittivity of nanostructures within the wings of the Chalcopteryx rutilans damselfly
  • [17][18][19]; nanostructures which make it a natural photonic crystal. We obtain quantitative information about the wing structure and its local relative permittivity values. We also simulate the optical reflectance using the extracted spatial profile of the relative permittivity and compare it with
PDF
Album
Full Research Paper
Published 28 Jan 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • Sina Kaabipour Shohreh Hemmati School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA 10.3762/bjnano.12.9 Abstract The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including
  • but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment
  • type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis
PDF
Album
Review
Published 25 Jan 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • ]. An experimental study of the ensemble of these nuclei demonstrated that they are nanostructures consisting of pure copper. The obtained results clearly illustrate that the spectral analysis, often used to determine the chemical composition of sufficiently large samples, can take into account not only
PDF
Album
Full Research Paper
Published 19 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • HIM in the field of medicine came in 2011 when Bazou et al. used the HIM to study tumor cells [9][10] and Arey et al. studied the interaction of nanoparticles with alveolar epithelial cells [11]. In the following two years, reports on HIM imaging of the nanostructures on butterfly scales by Boden et
  • required subsequent rinsing with ethanol for the cell drying process.” In turn, the pits in the HIM image reveal “the shape of the nanodomains as missing lipid bilayers.” In 2018, HIM was used to study peptide nanostructures for the first time. Herrera et al. studied the initial stages of the
  • micro- and nanostructures responsible for the structural colouration of the wings of two different butterfly species, Papilio ulysses (Blue Mountain Butterfly) and Parides sesostris (Emerald-patched Cattleheart), were imaged to a level of detail not obtained previously with SEM. The study took advantage
PDF
Album
Review
Published 04 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • were attributed to an increase in the dipolar interparticle interactions due to the close packing of nanoparticles within the tubes [7]. There are several potential applications that use metal–metal oxide/CNTs hybrid systems. Carbon nanostructures decorated with titania and silica are used for the
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • Patryk Florkow Damian Krychowski Stanislaw Lipinski Department of Theory of Nanostructures, Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17,60-179 Poznań, Poland 10.3762/bjnano.11.169 Abstract We study the magnetoconductance of small-bandgap carbon nanotube
PDF
Album
Full Research Paper
Published 23 Dec 2020

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • individual nanomaterials can be a challenging task. However, it opens up opportunities for the production of increasingly complex nanostructures. Unusual rolled multiwall carbon nanotube structures are synthesized here by simply inducing a change of precursor composition during the growth of multiwall carbon
  • nanotube forests. The multiwall carbon nanotube structures are comprised of nitrogen-doped and undoped sections, and are obtained via a detailed peel off and roll mechanism. These results open new doors for the development of increasingly complex nanostructures. Keywords: chemical vapor deposition
  • for other more complex nanomaterials remains underexploited. We recently proposed new approaches to prepare such complex materials [16]. In this work it is explored how template-free 3D nanostructures can be obtained by using CNTs with junctions. Results To develop new ways to induce a compositional
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020
Other Beilstein-Institut Open Science Activities