Search results

Search for "nanostructures" in Full Text gives 749 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • nanostructures are attractive candidates for photocatalysis owing to their tunable physicochemical properties, their interfacial contact effects, and their efficacy in charge-carrier separation. This study reports, for the first time, on the synthesis of mesoporous silica@nickel phyllosilicate/titania (mSiO2
  • @NiPS/TiO2) core–shell nanostructures. The TEM results showed that the mSiO2@NiPS composite has a core–shell nanostructure with a unique flake-like shell morphology. XPS analysis revealed the successful formation of 1:1 nickel phyllosilicate on the SiO2 surface. The addition of TiO2 to the mSiO2@NiPS
  • yielded the mSiO2@NiPS/TiO2 composite. The bandgap energy of mSiO2@NiPS and of mSiO2@NiPS/TiO2 were estimated to be 2.05 and 2.68 eV, respectively, indicating the role of titania in tuning the optoelectronic properties of the SiO2@nickel phyllosilicate. As a proof of concept, the core–shell nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • deposits upon electron exposure, and (vi) deposition rate and deposit composition. We now report an investigation of these practical aspects of Pt(CO)2Cl2 and Pt(CO)2Br2 in the context of their potential use in FEBID of Pt nanostructures. Experimental Synthesis Pt(CO)2Cl2. The compound was synthesized via
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • nanostructures are a new type of quantum electronics elements based on electron spin transport. Unlike conventional electronics, spintronics uses not only charge transfer, but also the electron spin in solids, solving the problem of transport and recording of information [1][2][3][4][5][6][7]. Based on the basic
  • structures are highly sensitivity to magnetic field switching and energy consumption is significantly reduced due to the absence of dissipation in such a valve in the ground (superconducting) state. Practice shows that the creation of multilayer S/F nanostructures with the required properties is an
  • properties of S/F nanosystem formation, it would be very useful to develop new integrated methods that combine theoretical modeling and experimental methods for analyzing the formation processes and properties of this class of functional nanomaterials and nanostructures. Here, computer simulation can
PDF
Album
Full Research Paper
Published 24 Nov 2020

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • reliable production of nanowires and other nanostructures [7][10][11][12][13]. By annealing below 700 °C [14], the Si(110)-(16×2) reconstruction is formed over large areas on the Si(110) surface. It has been widely investigated by reflection high-energy electron diffraction (RHEED) analysis [14][15
PDF
Album
Letter
Published 19 Nov 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • mass-separated FIBs from a Co36Nd64 LMAIS to implant Co into Si at elevated temperatures, leading to metallic CoSi2 nanostructures down to 20 nm [13]. Ge nanowires could be grown by molecular beam epitaxy, via a vapor–liquid–solid process, on a Si substrate after formation of a regular seed array using
PDF
Album
Full Research Paper
Published 18 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • conductivity of nanostructures, will yield a high efficiency of the conversion of thermal to electrical energy. Keywords: nanowires; Seebeck coefficient; thermal conductivity; thermoelectricity; Introduction Thermoelectric generators for direct conversion of heat into electrical power will certainly play a
  • thermoelectric material is the development of techniques for the low-cost fabrication and interconnection of a large number of nanostructures to generate a significant amount of power. Metal-assisted chemical etching (MACE) [11][12][13][14] of silicon is very promising because it gives the opportunity to
  • 800 °C for 10 min. In the case of undoped samples, it is very difficult to establish the final charge carrier concentration, because it is strongly affected by the surface states of the nanostructures. In the case of doped samples, it is presumable that the doping concentration inside the nanowires is
PDF
Album
Full Research Paper
Published 11 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • Anatolie S. Sidorenko D. Ghitu Institute of Electronic Engineering and Nanotechnologies, Chisinau, Moldova and Orel State University, Orel, Russia 10.3762/bjnano.11.152 Keywords: functional nanostructures; nanoelectronics; post-Moore generation; sensors; spintronics; supercomputers
  • ; Nanotechnology and functional nanostructures, exciting trends of the 21st century, are topics that have penetrated and influenced nearly all areas of human activity: from microelectronics to biology, from aerospace to medicine, from agriculture to novel materials engineering. One of the areas of nanoscience and
  • nanotechnology that is developing especially rapidly is research on functional nanostructures for targeted applications. One of the most important and promising of these targeted applications are superconducting spintronic nanostructures for supercomputers of novel, “post-Moore” generation. The exponential
PDF
Editorial
Published 10 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • for well-controlled and nanometer-precise patterning of the height of metal thin films and nanostructures prefabricated on the surface of these substrates. This technique is based on subsurface chemical decomposition, structural reconstruction, and, as a result of these processes, volume shrinkage of
  • polymer bulk [7]. In fact, the method utilizes ion energy losses to manipulate the surface morphology by means of radiation damage generated in the substrate bulk and minimizes the surface damage resulting from sputtering. This leaves the thin films and the prefabricated thin-film nanostructures on the
  • with prefabricated nanostructures can be implemented in different schemes for nanoparticle control and separation in microfluidic systems [34], and as components of actuators or switches in MEMS [35][36]. Considering the future technological potential of the suggested method it is important to
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • small quantity of molecules can be observed here at all is attributed to surface-enhanced Raman scattering (SERS) [45]. This effect is most commonly observed on rough surfaces of noble metals [45] or at metal nanostructures [46], and it is utilized in surface-enhanced Raman spectroscopy [47]. There are
PDF
Album
Full Research Paper
Published 03 Nov 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • [1][2]. In order to achieve the maximum efficiency in using nanostructures, a comprehensive use of the fundamental scientific basis is necessary to open up opportunities for the creation of new devices and technologies. This approach to enlarging the variety of analytical tools includes using Yanson
  • process of exposure, components of the exhaled breath diffuse through the condensate film to the surfaces of the conduction channels of the point-contact matrix. This impacts the resistance characteristics of each one of the point-contact nanostructures and, as a result, the resistance of the whole matrix
PDF
Album
Full Research Paper
Published 28 Oct 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • ][9]. Silver materials in various shapes and types were used to explore this process, including foils [11][12], films [13][14][15][16][17] and nanostructures [18][19]. So far, most of the published studies considered pure silver as the ideal model system to study the silver oxidation process and only
  • gold/silver oxide nanostructures [20]. Starting from Au/Ag alloy nanospheres, they showed that gold/silver oxide core/shell nanospheres with a hollow interior could be obtained after oxidation using atomic oxygen. In this study we further explored the oxidation and phase separation events observed by
  • Lewis et al. [20]. However, instead of using nanostructures as before, we used Au/Ag alloy thin films deposited by co-sputtering as the model system to study the oxidation process triggered by radio-frequency oxygen plasma (Figure 1). The oxidation and phase separation processes resulted in the
PDF
Album
Full Research Paper
Published 22 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • SERS measurement. Different sizes of arrayed micro/nanostructures are fabricated by different treatment time using the electrochemical process. The topographies of these micro/nanostructures and the thickness of the Au film have an influence on the Raman intensity of the Mg substrate. Furthermore, when
  • /nanopore; nano/microstructures; SERS substrate; Introduction Surface-enhanced Raman spectroscopy (SERS) can be used to detect biomolecules [1][2][3], explosives [4][5][6], and pesticide residues [7][8][9]. Plasmonic metal nanostructures are often used as SERS substrates to increase the molecule-specific
  • is extremely weak [10][11]. SERS is representative of other technologies that can amplify signal intensities based on strong electromagnetic fields and chemical enhancement [12][13][14]. Recently, all kinds of shapes of nanostructures machined by several researchers as SERS substrates have been
PDF
Album
Full Research Paper
Published 16 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • found other variants of the MP degradation using bulk Cu2O or oxidized pennies. The main reason for using Cu2O NPs is that this type of nanostructures greatly decreases degradation time and enhances the degradation percentage. For example, the MP degradation using oxidized pennies requires about 8 days
PDF
Album
Full Research Paper
Published 12 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • integration, device-to-device communication, and bilateral transduction between electrons and photons [26]. An optical gap antenna typically consists of two nanostructures with a nanometer gap in between. Optical excitation induces a coupled plasmon oscillation along the two antenna parts, which can lead to
PDF
Editorial
Published 07 Oct 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • rectangular cantilevers. There are two major applications of AFM that currently use V-shaped cantilevers. First, in static-mode AFM, that is, contact-mode AFM, V-shaped cantilevers are used in the modification of surfaces and the movement of nanoparticles to manufacture nanostructures [14][15]. In order to
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • conditions, the size, length, and diameter of the nanostructures can be adjusted in order to control the physical properties of the NPs. Chemical methods A few examples of chemical methods that have been used to synthesize nanoparticles are the atomic layer deposition method, chemical reduction method
  • particle sizes, are listed in Table 2. The atomic layer deposition method is employed to grow metal oxide and metallic three-dimensional nanostructures using porous alumina membranes [41], electrostatically spun nanofibers [39][40] or electrosprayed spherical particles [38] as templates. As Figure 1 shows
  • thickness values of approximately 20 and 17 nm, respectively [38][39]. ALD has been recognized as a key technique used to deposit thin films on structures with complex geometries, allowing for the synthesis of nanostructures without shadowing effects and with a high aspect ratio, such as nanotubes with
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • Abstract The wafer-level integration of high aspect ratio silicon nanostructures is an essential part of the fabrication of nanodevices. Metal-assisted chemical etching (MACE) is a promising low-cost and high-volume technique for the generation of vertically aligned silicon nanowires. Noble metal
  • metals (Au, Pt, Pd, Cu, and Ir) were investigated to derive a set of technologies as platform for specific applications. Especially, the shape of the 3D structures and the resulting reflectance have been investigated. The Si nanostructures fabricated using Au nanoparticles show a perfect light absorption
  • with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems. Keywords: black silicon; bottom-up; metal-assisted chemical etching (MACE); nanowires; wafer-level integration; Introduction Silicon nanostructures
PDF
Album
Full Research Paper
Published 23 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • the formation of the nanostructures. The wetting behaviour of gold deposited either on silicon or silicon oxide wafers was studied. The property of gold to form a layer, droplets, or particles on silicon or silicon oxide was theoretically described and experimentally demonstrated by ultrahigh vacuum
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • Electronic Engineering and Nanotechnologies ASM, MD2028 Kishinev, Moldova Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany Laboratory of Functional Nanostructures, Orel State University named after I.S. Turgenev, 302026, Orel, Russia 10.3762/bjnano.11.118 Abstract
PDF
Album
Full Research Paper
Published 07 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • [24] with very high resolution. Magnetic properties of nanostructures can be measured using magnetic force microscopy (MFM) [42], and a host of AFM techniques are available to measure electrical properties of samples (e.g., conductive AFM (cAFM) [43], scanning capacitance microscopy (SCM) [44], and
  • of vertical and lateral resolution, nanoscale machining, and measurement of physical properties of the sample will allow for a multi-physics investigation in many areas of materials science and technology, such as energy materials, magnetic nanostructures, and (bio-)composites. Experimental All AFM
PDF
Album
Full Research Paper
Published 26 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • , for the first time, the effect of pH on the magnetic-field-assisted synthesis of iron oxide nanoparticles was investigated. The results show that different nanostructures were formed upon varying the initial pH of the reaction mixture: spheres were obtained at a highly alkaline pH whereas rods were
  • structure of the obtained nanostructures take place [14]. Two synthesis routes (at R = 2.1 and R = 8) will be considered in more detail. In addition, the effect of the ratio R between OH− and iron ions on the morphology of the synthesized nanostructures will be elucidated. First, the synthesis using
  • nanostructures. This is probably due to the highly charged surface of the particles, since at the excess of hydroxyl ions the resulting solution has very high pH (pH ≈ 14), far exceeding the isoelectric point of magnetite particles (6.0–6.7 [6][21][27]). This is confirmed by the fact that similar spherical
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • . Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow
  • Table 2). No clear trend was visible in Tc values for NWs grown using different currents, although the identified Tc range is in good agreement with the previously reported results [17]. Also, it is up to 1.5 times higher than that of Ga+ FIBID nanostructures of similar dimensions [9]. The inset of
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • )-encapsulated BaTiO3 nanoparticles with a 9:1 mass ratio of BTO/PTh, and a facile method for the synthesis of inverted [11] core–shell-type BTO-PTh nanostructures, which yields a uniform PTh coating on the BTO surface. BTO-PTh nanoparticles are prepared by Cu(II)-catalyzed oxidative polymerization of PTh on the
PDF
Album
Full Research Paper
Published 10 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • standing topics of various investigations because silicon is still the most widely used semiconductor material for a broad range of micro- and nano-electromechanical systems, microelectronics, and photovoltaics [1][2]. Silicon nanostructures, such as bottom-up-grown nanowires [3], were also synthesized
  • electronic functionality of such nanometer-scale building blocks. A rational and well-established synthesis strategy for the creation of complex silicon nanostructures is metal-catalyzed vapor–liquid–solid (VLS) nanowire growth [13]. VLS nanowire growth belongs to the gas-phase synthesis procedures, similar
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • materials, nanoscale metal chalcogenides (Cu2−xE, E = S, Se, Te), transition metal dichalcogenide nanostructures (e.g., WS2, MoS2), metal-oxide nanoparticles (e.g., WO3), and nanoscale coordination compounds (e.g., Prussian blue nanoparticles) [33][36][37][38]. The photothermal properties of these
  • field regarding the use of several gold nanostructures, such as nanocages, nanorods, nanostars, and core–shell silver/gold nanoparticles for laser-driven hyperthermal ablation of multi-drug resistant bacteria [52]. Therefore, we will focus here on the latest achievements in this field including the
  • nanostructures provided rapid and efficient eradication of up to 99% of both Gram-positive and Gram-negative bacteria within 10 min of NIR laser irradiation. In a very recent publication, poly(vinyl alcohol) hydrogel incorporating reduced graphene oxide composites (MoS2/Ag3PO4) was fabricated to yield a highly
PDF
Album
Review
Published 31 Jul 2020
Other Beilstein-Institut Open Science Activities