Search results

Search for "nanotubes" in Full Text gives 439 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • nanotubes and porous materials, has been a common strategy to minimize the leakage of LPSs. However, the function of physical confinement is limited, and it slows down diffusion for ionic transport [9]. The addition of anchoring materials into the cathodes with a strong binding affinity to LPSs was thought
  • composed of 1T'-phases and 2H-phases [33]. The composites of 1T'-MoS2 with other active materials, such as graphene [34], carbon nanotubes [35], Mxene [36], and SnO2 [37], have received much attention regarding the use as cathodes for Li–S batteries. The electrochemical performance including the capacity
PDF
Album
Full Research Paper
Published 26 Mar 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • ionic liquids in deposition of metal particles onto semiconductor nanoparticles afforded many references involving deposition of nanoparticles onto graphene and carbon nanotubes [18][19][20][21][22][23][24]. CdS nanorods with average diameters below 10 nm have been synthesized by Rao et al. in ionic
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • nanowires and carbon nanotubes, GNRs possess high sensitivity, high electron and hole mobility, chemical stability, low noise, and a large surface-to-volume ratio, properties which are highly desired for gas sensor applications. Electrically, GNRs have shown high sensitivity to their surroundings and
PDF
Album
Full Research Paper
Published 04 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • the uniform dispersion of carbon nanotubes (CNTs) in Bi2Te3 [16]. Another group has also reported an enhancement of the Seebeck coefficient (S) in CNT/Bi2Te3 to 132 µV/K at 423 K [17]. In a recent report, a power factor of 43 µW·cm−1·K−2 for CuI-doped Bi2Te3 has been shown, which is higher than that
PDF
Album
Full Research Paper
Published 04 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • , Belgium 10.3762/bjnano.10.58 Abstract Here we describe the development of chemoresistive sensors employing oxygen-plasma-treated, Au-decorated multiwall carbon nanotubes (MWCNTs) functionalized with self-assembled monolayers (SAMs) of thiols. For the first time, the effects of the length of the carbon
  • chain and its hydrophilicity on the gas sensing properties of SAMs formed on carbon nanotubes are studied, and additionally, the gas sensing mechanisms are discussed. Four thiols differing in the length of the carbon chain and in the hydrophobic or hydrophilic nature of the head functional group are
  • studied. Transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy are used to analyze the resulting gas-sensitive hybrid films. Among the different nanomaterials tested, short-chain thiols having a hydrophilic head group, self-assembled onto Au-decorated carbon nanotubes
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • , Geelong, Vic 3216, Australia 10.3762/bjnano.10.52 Abstract In this work, a unique three-dimensional (3D) structured carbon-based composite was synthesized. In the composite, multiwalled carbon nanotubes (MWCNT) form a lattice matrix in which porous spherical reduced graphene oxide (RGO) completes the 3D
  • nanotubes; energy storage and conversion; Li–S batteries; nanocomposites; Introduction Li–S batteries are notable for their high theoretical specific capacity (1675 mAh·g−1) and energy density (2600 Wh·kg−1). Sulfur is an abundant element, enabling Li–S batteries to be highly competitive among the various
  • (3D-RGO), showing a reversible capacity of 790 mAh·g−1 (at 0.2C) after 200 cycles [26]. It has been reported that three-dimensional carbon nanotubes/graphene–sulfur (3DCGS) is an excellent cathode template, revealing a final capacity of 975 mAh·g−1 after 200 cycles [24]. Carbon nanotubes (CNTs) can be
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • , Poland 10.3762/bjnano.10.49 Abstract Composites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth
  • . Capacitance values higher than 10 mF·cm−2 were maintained even after 10000 galvanostatic cycles (ic = ia = 0.5 mA·cm−2). Keywords: bismuth vanadate (BiVO4); electrochemical activity; PEDOT:PSS; supercapacitors; titania nanotubes; Introduction Energy-storage technologies and sustainable energy production are
  • surface of conjugated polymers [25]. In this study, we modified the surface layer of titania nanotubes and tested it as a potential electrode material for energy storage devices. The enhancement of pseudocapacitance, and the extension of the electroactivity range are the goals of this research. A
PDF
Album
Full Research Paper
Published 15 Feb 2019

Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell

  • Denys M. Natarov,
  • Trevor M. Benson and
  • Alexander I. Nosich

Beilstein J. Nanotechnol. 2019, 10, 294–304, doi:10.3762/bjnano.10.28

Graphical Abstract
  • wavelength. It is a well-established fact that on thin metal nanotubes, the thickness of which is comparable to the skin-depth thickness in the optical range (about 10 to 20 nm), the modes of the outer and inner boundaries hybridize [15]. This means that they form pairs, , in which the H-field of one mode is
PDF
Album
Full Research Paper
Published 28 Jan 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • derivatives, such as active carbon, porous carbon, graphene, carbon nanotubes with good electrical conductivity and high specific surface area, are most commonly employed as electrode materials [5][6][7]. The other category are pseudocapacitors governed by reversible faradic redox reactions at the interface
PDF
Album
Full Research Paper
Published 25 Jan 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • morphological structures such as nanorods [5][6][7], nanowires [8], tetrapods [9], nanodisks [10], nanotubes [11], flowers [12], and nanocrystals [13], have been reported. Among the many nanostructured morphologies possible for ZnO, self-assembled ZnO nanocrystals (NCs) have been attracting great attention due
PDF
Album
Full Research Paper
Published 24 Jan 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • external surface of multiwalled carbon nanotubes (MWCNTs) with rhodamine-110 to localize them close to the mitochondria membrane [43]. The positive charge provided by rhodamine-110 provokes the electrostatic binding with the highly negative mitochondria membrane (−180 mV to −160 mV). These MWCNTs were
PDF
Album
Review
Published 14 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • , 7000 Mons, Belgium Physics Department & Center for Environmental and Smart Technology (CEST), Faculty of Science, Fayoum University, Fayoum, Egypt 10.3762/bjnano.10.10 Abstract In this work, we investigated the parameters for decorating multiwalled carbon nanotubes with iron oxide nanoparticles using
  • by selecting the appropriate ratio of carbon nanotubes/iron salt, while nanoparticle size can be modulated by controlling the calcination period. Pristine and iron-decorated carbon nanotubes were deposited on silicon substrates to investigate their gas sensing properties. It was found that loading
  • with iron oxide nanoparticles substantially ameliorated the response towards nitrogen dioxide. Keywords: benzene detection; doping; gas sensor; metal nanoparticle decoration; multiwalled carbon nanotubes; NO2 detection; room temperature gas sensing; surface modification; Introduction Carbon nanotubes
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • TC enhancement, although at high loading [14][15]. Some graphitic fillers have theoretical TC values of up to several thousands of W/(m∙K) [16][17], making them natural candidates for use in TIMs. Within the group of graphitic fillers, it seemed likely that carbon nanotubes (CNTs) would be suitable
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • composites [11][12][13][14]. NLCs doped with graphene or carbon nanotubes show a faster response in electro-optical switching than pure liquid crystal compounds. This effect is caused by trapping of some free ion concentrations [15][16] or reduction in the rotational viscosity [17]. Furthermore, due to
  • strong π–π electron stacking of liquid crystal molecules on graphene sheets, one obtains pseudo-nematic domains [18], which enhance the electric anisotropy in the nematic phase. Carbon nanotubes doped into the nematic liquid crystal can effectively reduce the driving voltage due to the increase of the
PDF
Album
Full Research Paper
Published 07 Jan 2019

Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene

  • Qian Zhang,
  • Qiyu Gu,
  • Fabrice Leroux,
  • Pinggui Tang,
  • Dianqing Li and
  • Yongjun Feng

Beilstein J. Nanotechnol. 2018, 9, 2980–2988, doi:10.3762/bjnano.9.277

Graphical Abstract
  • functional additives have attracted increasing attention for their wide applications in polymers [7]. Organic anti-aging species have been immobilized onto inorganic supports (e.g., carbon nanotubes, SiO2, graphene oxide) to produce inorganic–organic composites with higher migration resistance [8][9][10
PDF
Album
Full Research Paper
Published 05 Dec 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • carbon nanotubes [24][25][26] and stiff thermoplastic materials [27]. On the other hand, micrometer-scale fibers (i.e., fibers with diameter larger than 5 µm) do not adhere even to smooth surfaces as they lack the necessary contact compliance [28]. Composite fibers where the tip is softer than the stalk
PDF
Album
Full Research Paper
Published 19 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • literature including EUV mask repair [89], cutting of nanotubes [90] and etching of holes in thin films. In this review we enumerate the major contributions in high-resolution EBIE which, although relatively few in number, clearly demonstrate the potential of the technique. The fabrication of nanopores, for
PDF
Album
Review
Published 14 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • ][27][28][29][30][31][32][33][34]. Additional methods appeared in which nanoparticles or metal films are deposited on structured substrates as carbon nanotubes [35][36][37][38][39], graphene foam [40], nanorod or nanopillar arrays [41][42], biological scaffolds [43][44], black silicon [45][46
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • Strasbourg 7177 10.3762/bjnano.9.257 Abstract Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high
  • activity is not jeopardized. Keywords: biosensing; carbon nanotubes; covalent functionalization; electrocatalysis; ferrocene; Introduction Carbon nanotubes (CNTs) have been recognized as interesting candidates for developing electrochemical sensors for almost two decades [1][2][3]. They have been used to
  • sidewalls. In the literature, this is often done by heating under reflux the CNT sample in a strong acidic medium for several hours or days. Doing so, many oxidized functions are introduced but the nanotubes are also cut and shortened. Since we intended to retain the essential electronic properties of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • ” saturable absorbers (SAs) for lasers operating in the passively Q-switched (PQS) and mode-locked regimes. These include carbon nanostructures (e.g., graphene, graphene oxide, graphite nanoparticles, single-walled carbon nanotubes (SWCNTs)) [12][13][14][15], few-layer transition metal dichalcogenides (TMDs
  • under ns-laser excitation [23]. This effect was ascribed to the defects promoted by the Mn2+ doping. Some studies revealed reverse saturable absorption (optical limiting) in ZnO thin films and NRs [24]. Zhu et al. studied ultrafast saturable absorption of multiwalled carbon nanotubes (MWCNTs) on quartz
PDF
Album
Full Research Paper
Published 23 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • Columbia, V6T 1Z4, Canada 10.3762/bjnano.9.244 Abstract Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte. The influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated. Concomitant with the anodization time, the NT
  • photooxidation of methylene blue. Keywords: fluorine doping; nanotubes; photocatalytic activity; photoelectrochemistry; titanium(IV) oxide (TiO2); Introduction TiO2 started to attract great interest after Fujishima and Honda reported [1] on its photoelectrochemical (PEC) properties in 1972. Numerous features
  • synthesis methods resulting in a wide range of morphologies, such as mesoporous structures [4], microtubes [5], microdendrites, nanoparticles [6][7][8], nanorods [9][10], nanotubes [11][12][13], nanowires [14], and nanosheets [15][16]. Standing out from the rest of the synthesis techniques, electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • graphitic carbon nitride [2][3], carbon nanodots [4], and two-dimensional carbon-based nanocomposites [5][6][7] are a few trending nanomaterials that have already found extensive applications in both environmental remediation and energy generation. In the past, carbon nanotubes (CNTs) have received a great
PDF
Album
Review
Published 19 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • , nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes
  • , using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. It was found that the sensitivity of the resulting electrochemical sensors depends on the morphology of the ZnO nanostructures: the best results were achieved in the case of porous nanostructures (nanotubes and
  • obtaining ZnO nanostructures in various morphologies, such as ZnO nanoneedles, nanorods, nanotubes, nanoplates, etc. Also the purpose of our previous research was to identify optimal growth parameters for obtaining a homogeneous, dense, well-aligned nanostructured ZnO coating with good adhesion to hard
PDF
Album
Full Research Paper
Published 11 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • , and larger surface-to-volume ratio [34]. The large surface-area-to-volume ratio of nanofibers (NFs), hollow nanofibers (HNFs), nanotubes (NTs) and nanowires (NWs) with micro/mesoporous surfaces results in improved adsorption and better reaction kinetics of gas-sensitive materials. Nanofibers can be
  • with a W precursor and poly(vinyl pyrrolidone) was produced and a mineral oil was used to define the core. The PS particles and mineral oil are later removed by calcination. A schematic diagram of the electrospinning setup and resulting nanotubes are shown in Figure 6. Fan et al. [76] developed a new
  • nanotubes (NTs) in a single capillary electrospinning process by changing the heating rate during the calcination process [79]. Similarly, In2O3 NFs are converted into nanoribbons (NRbs) by changing the experimental parameters [80]. The rapid evaporation of solvent and the concentration of the precursor are
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • carbon nanotubes since the 1990’s and of graphene ten years later prompted the development of novel nanotechnologies. We review this topic linking fundamental surface science to the field of catalysis giving a timely picture of the state of the art. The main scientific questions that material scientists
  • have addressed in the last decades are described, in particular the enduring debate on the role of the different nitrogen functionalities in the catalytic activity of nitrogen-doped carbon nanotubes and graphene. Keywords: catalysis; carbon nanotubes; graphene; metal-free; nitrogen doping
  • -free catalyst for the ORR had not been considered feasible [9][10] until two fundamental milestones had risen the interest on carbon as an effective replacement of Pt for catalysis. The first one was the prediction of the remarkable electrical conducting properties of carbon nanotubes (CNTs) in 1993
PDF
Album
Review
Published 18 Jul 2018
Other Beilstein-Institut Open Science Activities