Search results

Search for "nitrate" in Full Text gives 191 result(s) in Beilstein Journal of Nanotechnology.

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • et al. [97] found that the adsorption capacity of cationic CNFs toward anions increased with the surface charge content of cellulose. They concluded that cationic CNFs with an ammonium content of 1.2 mmol/g can be considered as an efficient adsorbent for negatively charged ions such as nitrate (NO3
PDF
Album
Review
Published 19 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • aqueous solution of zinc nitrate hexahydrate (Zn(NO3)2·6H2O; 99% purity) and hexamethylenetetramine (HMTA; C6H12N4; 99% purity), where zinc nitrate is used as a source of Zn+ ions; however, HMTA acts as a pH buffer by slowly releasing OH− ions. The decomposition rate of HMTA increases with the temperature
  • compare the sedimentation characteristics of both substances, the concentration of nitrate was increased 100 times (to 300 mM), which led to an intense crystallization process and the formation of visually appealing sediments. As can be seen from Figure 6, for the same solution concentrations, Pb(NO3)2
PDF
Album
Full Research Paper
Published 11 Sep 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • microparticles to AgNPs in the first 10 min of light exposure. Mixing the silver nitrate and sodium chloride in the reacting solution resulted in the generation of a flocculent precipitate of AgCl. The presence of AgCl particles in the solution was evidenced in the UV–vis spectra as an intense absorption band at
  • exposure is shown in Figure S2B (using crystal violet as an analyte). The formation of AgNPs from AgCl precursor microparticles can be also followed in the scanning electron microscopy (SEM) micrographs depicted in Figure 3. Figure 3a shows 1–2 μm AgCl particles formed after mixing silver nitrate and
  • , the SERS bands of citrate previously reported by us [31][32] during the laser induced synthesis of SERS-active silver spots using silver nitrate-citrate mixtures can easily be explained by the presence of excess of Ag+ in the solution, which induces the chemisorption of citrate onto the metal silver
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • ) were commercially available from Fluka. Poly(ethylene glycol) thiols ( = 5000 g/mol; SH-PEG5000–OCH3 and SH-PEG5000–COOH), polyethylene glycol tert-octylphenyl ether (Triton X-100), chloroauric acid, ascorbic acid, silver nitrate, and sodium borohydride were purchased from Sigma-Aldrich and used as
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

Cryochemical synthesis of ultrasmall, highly crystalline, nanostructured metal oxides and salts

  • Elena A. Trusova and
  • Nikolai S. Trutnev

Beilstein J. Nanotechnol. 2018, 9, 1755–1763, doi:10.3762/bjnano.9.166

Graphical Abstract
  • significant increase in technological cost. Experimental Preparation The process of obtaining nanopowders via cryotreatment consists of several basic steps. First, the salt solutions were prepared starting with a 30% salt solution in deionized water to produce sodium nitrate nanopowders. The combined method
  • oxide nanopowders, the starting salt solutions were mixed with a solution of DMOA in acetylacetone, whereby a stock solution was obtained. To obtain the sodium nitrate nanopowder, the salt solution was sent to the dispersion immediately after production. The resulting solutions or colloids were sprayed
  • ), as well as highly dispersed sodium nitrate powder. Characterization The phase composition and morphology of the nanopowders obtained were investigated by X-ray diffraction methods (XRD, DRON-3M (Russia) and XRD-6000 Shimadzu (Japan)), transmission electron microscopy (TEM, LEO 912 AB Omega Carl Zeiss
PDF
Album
Full Research Paper
Published 12 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM
  • nitrate (NH4NO3) from Zorka Šabac; hydroxypropyl cellulose (HPC, Mw = 100.000 g/mol) from Sigma-Aldrich; plasmocorinth B (PB, dye content ≈60%) from Sigma-Aldrich; thiourea (pro analysis) from Kemika and urea (98%) from Acros Organics. Synthesis Titanium dioxide was prepared by a particulate sol–gel
  • , which acted as sources of metal and nonmetal dopants (e.g., urea, thiourea, ammonium nitrate – NH4NO3, chloroplatinic acid – H2PtCl6) and hydroxypropyl cellulose (HPC, an organic polymer, which increases the porosity of materials) were added. After deposition on glass substrates with dip-coating, the
PDF
Album
Full Research Paper
Published 04 Jun 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • degree), concentrated sulfuric acid, hydrochloric acid, sodium nitrate, potassium permanganate, hydrogen peroxide, hydrazine hydrate, acetic acid, sodium hydrate, and 1-naphthol were purchased from Sinopharm Chemical Reagent Co., Ltd., China. 2-Hydroxypropyltrimethylammonium chloride chitosan was
PDF
Album
Full Research Paper
Published 17 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • CNTs [44][45]. 1 M standard aqueous solutions of the following nitrates have been prepared: Fe(NO3)3·9H2O (grade: ACS 99.0–100.2%) and Co(NO3)2·6H2O (grade: ACS 98.0–102.0% metal basis) supplied by VWR Chemicals and Alfa Aesar GmbH & Co KG (Karlsruhe, Germany). The nitrate salts were used as provided
  • 600 °C for 48 h. In an attempt to obtain a relatively higher degree of filling, a second approach was followed in which the nitrate precursors were directly mixed with the specific amount of CNTs (mainly 50 mg) in a sealed round bottom flask. A few drops of distilled water were added to ensure good
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • from a 0.1 M silver nitrate solution in the presence of poly(vinyl pyrrolidone) (PVP, Mw ≈40000 kDa). The Ag/PVP molar ratio was varied to optimize the phase composition and micromorphology of the product. The microstructure of the products varied with the molar ratio of the reactants (Figure 1a,b). A
  • procedure reported by Lyu et al. [26]. Briefly, 0.05 g of crystalline silver nitrate (Carl Roth GmbH, ≥99%, Ph.Eur., extra pure) was dissolved in 210 mL of 0.2 M ammonium nitrate NH4NO3 aqueous solution. PVP solution was added slowly in the PVP monomeric unit/silver at atomic ratios of 5:1 or 10:1. The
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • of silver 2,2-dimethylbutyrate, carboxylic acid and potassium nitrate were suspended in a water–ethanol solution, heated up to 40 °C and stirred, followed by the addition of silver nitrate. Silver pentafluoropropionate was synthesized by the reaction of fluorinated carboxylic acid and silver
PDF
Album
Letter
Published 08 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • ability as compared to pure BiOI and ZnO, which could be attributed to the synergistic effects of higher specific area and the enhanced separation efficiency of photoinduced electron–hole pairs. Experimental Chemicals Zinc acetate (Zn(CH3COO)2·2H2O), bismuth nitrate (Bi(NO3)3·5H2O), potassium iodine (KI
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • Equation 4 [20]. Fast SCR and standard SCR can be distinguished according to the formation of NO2. In fast SCR, nitrous acid (HNO2) and nitric acid (HNO3) are formed from the dimerisation of NO2 [2]. Then, an ammonium nitrate (H4NNO3) intermediate is formed when NH3 reacts with HNO3 and subsequently
PDF
Review
Published 27 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • pollutants from water very effectively. Experimental Materials Both titanium diisopropoxide bis(acetylacetonate) and dicyandiamide were purchased from Sigma-Aldrich, India. Calcium nitrate (Ca(NO3)2·4H2O), acrylamide and D-glucose were supplied by MP Biomedicals, India. Ammonia solution (NH3 about 25
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • -tetradecylimidazolium chloride [TDMIM][Cl] were purchased from Ionic Liquids Technologies GmbH. Ammonium oxalate, silver nitrate (≥99%), benzoquinone and tert-butyl alcohol from Sigma-Aldrich were used as scavengers. Photocatalyst preparation TiO2 was modified by ILs using a solvothermal method. First of all, the
PDF
Album
Full Research Paper
Published 14 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • (H2O2, 30%), potassium permanganate (KMnO4), concentrated sulfuric acid (H2SO4, 98%), hydrochloric acid (HCl), sodium nitrate (NaNO3), sodium chlorite (NaClO2), phosphorus pentoxide (P2O5), potassium persulfate (K2S2O8) and ammonium hydroxide (NH3·H2O) were purchased from Nanjing Chemical Reagent Co
PDF
Album
Full Research Paper
Published 12 Feb 2018

Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions

  • Alessandro Buccolieri,
  • Antonio Serra,
  • Gabriele Giancane and
  • Daniela Manno

Beilstein J. Nanotechnol. 2018, 9, 499–507, doi:10.3762/bjnano.9.48

Graphical Abstract
  • concentration range of 0.5–200 ppm. Finally, the silver ions run out and the rate of nucleation goes into saturation. Experimental Materials Silver nitrate (AgNO3, 99%), α-D-glucose (C6H12C6, 99.99%), sucralose (C12H19Cl3O8, 98%) and ammonia (30% solution) were purchased from Sigma-Aldrich and used without
PDF
Album
Full Research Paper
Published 09 Feb 2018

Kinetics of solvent supported tubule formation of Lotus (Nelumbo nucifera) wax on highly oriented pyrolytic graphite (HOPG) investigated by atomic force microscopy

  • Sujit Kumar Dora,
  • Kerstin Koch,
  • Wilhelm Barthlott and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2018, 9, 468–481, doi:10.3762/bjnano.9.45

Graphical Abstract
  • may suggest that salts like ammonium-nitrate or -sulfate do not seem to interact with wax molecules at all and, hence, have no effect on tubule growth rate or orientation. But a too low solubility of these two salts in chloroform (dipole moment 1.15 D) in order to expect any influence cannot be
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • different scavengers (Figure 10). Silver nitrate was used as electron scavenger, ammonium oxalate as hole scavenger, benzoquinone for O2•− and tert-butanol for •OH radicals. After 60 min of visible light irradiation in the presence of SHT photocatalyst, the degradation rate declined from 0.31 to 0.30
  • μmol·dm−1·min−1 due to addition of ammonium oxalate and tert-butanol (Table 4). While, after the addition of silver nitrate and benzoquinone, the degradation rate decreased from 0.31 to 0.12 and 0.22 μmol·dm−1·min−1, respectively, suggesting that photogenerated electrons and superoxide radicals are the
  • , respectively) compared to the system without scavengers (0.62 μmol·dm−1·min−1), suggesting a limited role played by holes in the photocatalytic process. The addition of silver nitrate and benzoquinone significantly reduced the phenol degradation rate (from 0.62 to 0.15 and 0.21 μmol·dm−1·min−1, respectively
PDF
Album
Full Research Paper
Published 06 Feb 2018

Blister formation during graphite surface oxidation by Hummers’ method

  • Olga V. Sinitsyna,
  • Georgy B. Meshkov,
  • Anastasija V. Grigorieva,
  • Alexander A. Antonov,
  • Inna G. Grigorieva and
  • Igor V. Yaminsky

Beilstein J. Nanotechnol. 2018, 9, 407–414, doi:10.3762/bjnano.9.40

Graphical Abstract
  • Offeman, in which graphite is treated with a mixture of concentrated sulfuric acid, sodium nitrate, and potassium permanganate and then washed with water [8]. Traditionally, HOPG is used as a model material to study the physical and chemical processes occurring on graphite surfaces [9]. HOPG consists of
  • provided by Optigraph GmbH (Germany). Samples of HAPG with a size of ≈10 × 10 mm2 were cleaved before the experiment. Then, an oxidation mixture was prepared consisting of 5 mg of sodium nitrate, 30 mg of potassium permanganate, and 230 μL of concentrated sulfuric acid (obtained from Sigma Tec). 10 μL of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2018

Dielectric properties of a bisimidazolium salt with dodecyl sulfate anion doped with carbon nanotubes

  • Doina Manaila Maximean,
  • Viorel Cîrcu and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 164–174, doi:10.3762/bjnano.9.19

Graphical Abstract
  • dropwise to a solution of compound 2 (2 g, 3.0 mmol) in dichloromethane (50 mL). The mixture was stirred at room temperature for 1 h after which 100 mL of deionised water was added. The organic layer was separated and washed repeatedly with water until no reaction with silver nitrate for Br− was noticed
PDF
Album
Full Research Paper
Published 16 Jan 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • hydrothermal synthesis process. The synthesis was conducted in an equimolar aqueous solution containing zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (C6H12N4). During the synthesis a temperature of 90 °C was maintained for 3 h. The experimental procedure has been described in detail in
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • stability compared to the previously reported silver halogen plasma catalyst, which make it more suitable for practical application. Experimental Chemicals Silver nitrate (AgNO3, Shanghai Chemical Co.) and ammonium thiocyanate (NH4SCN, Tianjin Reagent Co.) were used as precursors for the synthesis of silver
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • works devoted to one-step formation of porous carbon–CNT hybrids for energy storage applications. Lei et al. have reported the CCVD synthesis of nitrogen-doped ordered mesoporous carbon and multiwalled CNTs (MWCNTs) with the use of a silica SBA-15 template impregnated by iron nitrate [14
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • , Ithaca, NY, USA) for 40 s and contacted with SAMs. The stamps were removed from Au substrates after 2 h. The substrates were then treated with 20 mM iron(III) nitrate and 30 mM thiourea for 10–15 min to etch the Au selectively from the exposed regions. Fabricating flat poly(dimethylsiloxane) stamps The
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • silver nitrate in the presence of poly(vinylpyrrolidone) (PVP, Figure 2) and sodium bromide. The nanobars formed when bromide ions etched the multiply twinned seeds, promoted the formation of single crystal seeds, and initiated anisotropic growth [68]. Longer silver nanowires grew from multiply twinned
  • nanoparticles by the reduction of silver nitrate in the presence of PVP. The twin boundaries served as active sites for the addition of silver atoms as the strong interaction between PVP and the sides of the initially formed nanorod allowed preferential diffusion of the silver atoms to the ends of the nanorods
PDF
Album
Review
Published 07 Dec 2017
Other Beilstein-Institut Open Science Activities