Search results

Search for "patterning" in Full Text gives 178 result(s) in Beilstein Journal of Nanotechnology.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • using FEBIE with water [25], namely dodecane (C12H26) for the deposition of carbon and crystals of MgSO4·7H2O for etching with water. Both precursors were let into the chamber at room temperature. The base pressure in the specimen chamber was between 2 × 10−6 and 4 × 10−6 mbar. During patterning (both
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • electron microscopy; Introduction Scientific research varying from electronics to photonics, homeland security, high-resolution parallel patterning of magnetic media, biotechnology, and medicine are based upon nanotechnology. These applications require nanopatterning techniques to fabricate devices or
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • communication devices. All those future technologies will require high-precision lithography techniques with excellent lateral resolution, high throughput, and minimized possibility of material damage. In the last decade, several approaches have been made to provide the most suitable method for patterning
  • be optimized to prevent unnecessary defects and reduce the detrimental impact on the underlying substrate. The optical microscope image of the graphene flake before the patterning process is shown in Figure 2A. The size of the etched lines, estimated based on SEM measurements, is usually smaller than
  • monolayer, bilayer at triple-layer graphene. A) Optical microscope image of a graphene flake prior to patterning; B) SEM image of the same flake after the patterning process; C) Raman map according to the spectra in (D), revealing the substrate (red line), pristine (green line), and exposed regions (blue
PDF
Album
Full Research Paper
Published 07 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • a clean lift-off process. The larger undercut is realized by multi-dose exposure, which consists of two parts: The main exposure is for patterning the nominal structure, and an additional exposure is for patterning the outline of the nominal structure. This additional exposure is performed with a
  • membrane also allows for high-resolution patterning since there is less electron scattering during exposure [26]. The purpose of applying two layers of resist is to create a large undercut by using a bottom layer that is more sensitive than the top layer. This prevents the unwanted deposition of metal that
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • photolithography for master mold preparation and soft lithography and solvent casting for PU film patterning. Challenges in the use of photoresist master molds for PDMS replica molding and microgroove formation were addressed using “reinforcement” strategies. Differentiation of PC12 cells on the PU substrates
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • (PBZT) and a 150 nm LNO as the top electrode were deposited. The wafer was patterned by a standard photolithographic process, starting with the application and patterning of the photoresist mask for defining the device areas. Subsequently, the excess PBZT and LNO were removed by a wet etching process
  • finalized by etching circular holes from the backside of the wafer to obtain thin membranes. The sizes of these holes were defined by applying and patterning a photoresist on the backside of the wafer, which was then anisotropically etched by deep reactive ion etching (DRIE) using SF6, O2, and C4F8 gases
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • microoptic fabrication, grayscale lithography offers a solution to mitigate the staircase effect. Grayscale lithography is a novel approach in photolithography for 2.5D patterning (x,y,z) with ultrasmooth surfaces that exhibits improved shape accuracy [57][58]. In 2019, Nanoscribe GmbH & Co launched the
PDF
Album
Perspective
Published 15 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.14.68 Abstract Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors
  • years, the need to control what happens at the surface of the sample has risen sharply, specifically for semiconductors [3][4], microelectronics [5], and surface patterning [6][7]. Other applications of low-energy beams include the preparation of nanoholes [8][9]. Furthermore, deposition processes are
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • PMC simulation the overall flux seems to be much more homogeneous. A careful eye might also note some faint patterning in the colours of the PMC results. As the colour scale for Figure 7 spans a large range, we can look to a more convenient visualization in Figure 8. Here we have clipped the colour
PDF
Album
Full Research Paper
Published 15 May 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • -off lithography; gap; self-assembled monolayer; sub-micrometer; surface patterning; Introduction The development of lithographic techniques is crucial to the advancement of the electronics and semiconductor industry, the backbones of modern technology. Advances in photolithography have pushed the
  • be used to produce even smaller features with arbitrary shapes, but the serial nature of these practices forbids their suitableness for high volume productions [3][4]. Soft lithographic techniques are hybrid approaches which have been extensively studied as alternatives to achieve precise patterning
  • to allow high-resolution patterning over a large area. In addition to standard lithographic operations using this approach, the CLL process can also be applied to create functional molecular patterns by backfilling post lift-off regions with various molecules [20][21][22]. Interestingly, the CLL
PDF
Album
Full Research Paper
Published 04 Jan 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • , patterning, and sensing, as a result of their advantageous characteristics [125]. Han and co-workers extracted cow milk-derived CDs (CM-CDs) from aqueous solution using ethyl acetate to create amphiphilic CM-CDs (ACMCDs). A unique ACMCD-Ag/polymethylmethacrylate antibacterial film was produced utilizing the
PDF
Album
Review
Published 05 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.13.86 Abstract Focused ion beams (FIB) are a common tool in nanotechnology for surface analysis, sample preparation for electron microscopy and atom probe tomography, surface patterning, nanolithography, nanomachining, and
  • probe tomography (APT) [5], and ion beam analysis used for life sciences applications [6][7]), surface patterning [8], nanolithography [9], nanomachining [10][11], and nanoprinting at room [12] and cryogenic temperatures [13]. The development of nanotechnology relies on lower ion beam energies and
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • : C4 PMMA; Wafer 2: B2 PMMA). Both wafers started with the patterning of Cr/Au contacts (deposited by magnetron sputtering) using direct-write laser lithography and ion milling. The fabrication of the two wafers followed slightly different steps, as described below. Wafer 1: A stopping layer (Al2O3
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • was reproduced from [141], O. Dalstein et al., “Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors”, Angewandte Chemie International Edition, with permission from John Wiley and Sons. Copyright © 2017 Wiley-VCH Verlag GmbH & Co
PDF
Album
Review
Published 12 Aug 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • ]. Although the results showed no appreciable difference between NMS and MS scaffolds in terms of inducing redifferentiation, nanoscale patterning of the microfibers influenced cell proliferation. In another study, similar results were obtained regarding the effect of poly(ʟ,ᴅ-lactide) (PLDLA) microfibers or
PDF
Album
Review
Published 11 Apr 2022

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • light. The resist is sprayed or spin coated onto a substrate surface for patterning and is exposed to light (usually ultraviolet) either through a contact mask or using a projection stepper, followed by wet development to form a resist pattern. This technique requires well-established photosensitive
  • fabricated using reshaped photoresist technology to form a channel inside (Figure 5c). The microneedle had a 1500 μm long shaft with a 45° angle tapered tip and a 1000 μm long pedestal. The manufacture comprised of repetitive patterning of the substrates by electroplating metal layers with multiple
PDF
Album
Review
Published 13 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • of induced defects and number of implanted ions is limited in FIBs that are optimized for patterning applications (such as Ga FIB/SEM or HIM when operated with Ne). The highest concentration of ion implantation and defects is reached once the sample has been milled down to a depth which corresponds
  • ions/nm2 and 2247 ions/nm2 at a 0° incidence angle. An acceleration voltage of 25 kV is a commonly used operating parameter for patterning with neon and was chosen for that reason in these experiments. To achieve 30 keV Ne ions, the extractor would have to be raised to >37.5 kV which can lead to source
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • strength ε extends the domain of α and k∥ in which patterning is possible. Numerical simulations In order to perform numerical simulations of the process of pattern formation during deposition we will proceed in a manner closely related to [63][64]. We will solve numerically Equation 4 on a two-dimensional
PDF
Album
Letter
Published 13 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • traps that pin the Fermi level at the Dirac point. Later conductivity tuning of graphene went on to combine this irradiation-induced effect with the fine patterning capabilities of the HIM performing line irradiations across graphene with varying step sizes between dwell points [21]. This produced
  • disks was achieved by inhomogeneous irradiation using a concentric pattern with a higher dose on the outside, rather than using homogeneous irradiation [32] (Figure 2e). Nanoscale magnetic patterning of Co/Pt multilayers using a checkerboard helium ion irradiation pattern has also recently been
  • demonstrated [51]. Furthermore, tuning of the metamagnetic transition temperature of an FeRh thin film (from antiferromagnetic to ferromagnetic behavior) has been achieved by varying the helium ion dose from 1 × 1014 to 5 × 1015 ions/cm2, with the patterning of features down to 25 nm in size [52]. In a study
PDF
Album
Review
Published 02 Jul 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • corroborate that the h-BN monolayer is only weakly coupled to the Cu(111) surface as is evidenced by the large angular range of Moiré superstructures observed, which in turn leads to work function patterning. Using FER and KPFM maps we report a work function variation of 148 ± 17 and 86 ± 16 meV, respectively
PDF
Album
Letter
Published 17 Jun 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • Leonardo da Vinci, 32 20133 Milano, Italy 10.3762/bjnano.12.25 Abstract Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however
  • , is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in
  • -mat are presented. Keywords: automated patterning; focused He ion beam; graphene; magnetic multilayers; mechanical resonator; pattern generation; plasmonic antennas; two-dimensional materials; Introduction Future breakthroughs in nanotechnology will rely on the ability to fabricate materials and
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • . Therefore, corresponding treatment processes (e.g., deposition of conductive materials by laser patterning, screen printing, spray coating, thermal deposition, surface morphology engineering, and chemical modification [46][92][93][94][95][96][97][98]) are often applied to convert paper into a conductive
  • paper-based 3D foldable device submitted to a direct laser patterning method, which can convert ink-soaked paper substrates to multifunctional carbide/graphene (MCG) composites [92]. The composites have shown good conductivity even after repeated mechanical bending and folding tests. Moreover, the laser
  • deposition and patterning methods it is possible to apply sophisticated electronic devices or e-skins on flexible and arbitrary substrates [75][104][105][106][107]. The electronegativity of the friction layer is critical for the triboelectrification properties of TENGs. Surface chemical modification (to
PDF
Album
Review
Published 01 Feb 2021

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • ultrahigh-resolution (immersion) mode. Specific patterning parameters such as electron beam dwell time and the refresh time between exposure passes will be detailed for each experiment. To characterize FEBID growth, the height and base diameter of pillars were measured using 35° tilt images. Energy
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • /bjnano.11.156 Abstract While the application of focused ion beam (FIB) techniques has become a well-established technique in research and development for patterning and prototyping on the nanometer scale, there is still a large underused potential with respect to the usage of ion species other than
  • junctions in high-temperature superconductors [11]. Although HIM is highly suitable for imaging and nanometer-scale patterning, there is a need of focused ion beams other than helium or neon with comparable properties. Alternative developments were made using laser-cooled magneto-optical trap ion sources
PDF
Album
Full Research Paper
Published 18 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark 10.3762/bjnano.11.151 Abstract This work explores a new technique for the out-of-plane patterning of metal thin films prefabricated on the surface of a polymer substrate. This technique is based on an ion-beam-induced material modification in the bulk
  • pristine Au were used to compare the patterning of thin films with different microstructures. We show that the height of Pt60Pd40 thin films deposited onto poly(methyl methacrylate) and polycarbonate substrates can be patterned by He+ ion beams with ultrahigh precision (nanometers) while preserving in
  • irradiation-induced mechanical strain in the patterning process are elaborated and discussed. Keywords: direct patterning; focused helium ion beam; out-of-plane nanopatterning; polymers; thin films; Introduction Micro- and nanofabrication with focused ion beams (FIBs) is currently a subject of strong
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020
Other Beilstein-Institut Open Science Activities