Search results

Search for "pressure" in Full Text gives 956 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • , on the one hand, and their non-toxicity and low vapor pressure, on the other hand. Room-temperature-liquid Ga-based alloys are considered for direct writing and printing stretchable and flexible electronic devices, such as antennas or wires [5][6][7]. Such applications and the related processing of
  • AFM tip and a metallic liquid alloy is based on a balance between the pressure applied by the tip onto the liquid surface and the restoring pressure due to the line tension at the liquid interface, that is, p(δ) = Fn(δ)/A(δ) = γ/P(δ), where A(δ) is the contact area and P(δ) is the perimeter between
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • a low-pressure CVD system (CVD First Nano, EasyTube 3000). A 25 µm thick annealed Cu foil (Alfa Aesar, purity 99.8%), serving as a metal catalyst, was placed in a graphite enclosed cavity during the whole process. The temperature for annealing and growth was kept stable at 1040 °C by PID thermal
  • controllers. The Cu foil was first annealed in argon atmosphere (500 sccm, 9.0 Torr) for 30 min in a quartz tube furnace. In the growth process, the gas mixture of argon (250 sccm), hydrogen (100 sccm), and methane (1.2 sccm) was subsequently introduced into the quartz chamber, where a reaction pressure of
  • 250Xi) using a non-monochromatic Mg Kα source with an analysis spot smaller than 2 mm2. The detection system contains a double-focusing 180° spherical sector analyzer with a mean radius of 150 mm and an energy range of 0 to 5 keV. The pressure in the analysis chamber was ca. 5 × 10−10 Torr, and the
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • the gelatin polymer chains. After release, the molecules might leave pores behind, which make the particles even more deformable. A further plausible mechanism is that the gelatin network can slide along the FITC-dextran molecules and therefore shows easier deformation under external pressure
  • by different FITC-dextran concentrations in PBS. Determination of lysozyme loading The loaded amount of lysozyme was investigated using the indirect method by reverse-phase high-pressure liquid chromatography (HPLC) with a method previously reported and validated by our group [12] using an Ultimate
PDF
Album
Full Research Paper
Published 16 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • , HR-TEM, and SAED characterizations. As shown in Figure 6a, based on the definition of IUPAC, the N2 adsorption−desorption isotherms of the 70%−Bi2WO6/TiO2-NT nanocomposite represent the type IV adsorption isotherm and the H3 type hysteresis in the range of 0.6 to 1.0 of the relative pressure (P/P0
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • time [31]. To reach sufficient sensitivity, the value should typically be larger than 1 V. Experimental The experiments were performed by customized ultrahigh-vacuum (UHV) noncontact atomic force microscopy (NC-AFM, UNISOKU) at a temperature T of 78 K with a base pressure below 5 × 10−11 Torr. The NC
PDF
Album
Full Research Paper
Published 25 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • cathode side to enable uniform distribution of O2 gas as well as efficient current collection. The cell was assembled in a glove box filled with purified Ar gas. Then, it was placed in a gas-tight chamber with a controlled gas flow rate and pressure, and high-purity O2 gas (99.99%) was supplied to the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • 10× (Olympus BX53M). Scanning electron microscopy (SEM) was performed with a FESEM (FEI Scios 2, Thermo Fisher Scientific, Waltham, MA, USA) at a chamber pressure of 1 × 10−4 Pa with electron beam voltages set between 1 and 30 kV, depending on the film. Films that are shown in optical dark-field
PDF
Album
Full Research Paper
Published 18 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • ], particle size reduction [25], and encapsulation in nanoscale delivery systems [11]. Nanoscale BBR crystals can be formed using top-down technologies (ball mills, high-pressure homogenizers, microfluidic technology, and spray drying) or bottom-up technologies (evaporative precipitation of nanosuspension
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • set to decrease overtime to overcome the effects of viscosity that can impose abrupt pressure on the mold cavities (Figure 1e). The upper disk was lowered by ≈1.5 mm (Figure 1g) at a speed which was non-linearly reduced from ≈50 to 5 µm/min ensuring that the maximum axial force did not exceed 30 ± 2 N
PDF
Album
Full Research Paper
Published 08 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • enables the system to keep the pressure constant but the volume is varied). The temperature of the nanofluid during simulation was maintained at 303 K with 1 bar pressure. Electrostatic and van der Waals forces were imparted on the nonbonded interaction for dispersion. Charges on the system were
  • and aqueous-based) were equilibrated from 303 to 323 K, with 10 K steps. All the above simulations were carried out under atmospheric pressure. Dynamical movement of molecules was imparted using smoothed particle hydrodynamic (SPH) and discrete particle dynamics (DPD) potentials. These two potentials
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • pressure of 10−8 mbar, CuPc powder (Sensient Imaging Technologies SA) is evaporated from a resistively heated crucible. The nominal deposition rate (0.2–0.3 nm/min) is monitored by a quartz crystal micro balance. A commercial optical microscope (MX50, Olympus) is used to obtain the bright-field optical
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • factors, but also provides a suitable mechanical environment for cells, including physical signals such as substrate stiffness, hydrostatic pressure, shear stress, strain, pressure, and tension [7][8][9]. These mechanical factors play an important role in regulating normal cellular physiological functions
  • being stiffer than those that are less spread (Figure 5a and Supporting Information File 1, Figure S6a). Furthermore, considering the rheological behaviour of the living cells themselves (i.e., the energy dissipated during the downward pressure of the probe to deform and recover the cells from
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • -thickness human skin was excised and treated. CIP_MN1 was then inserted into the skin using finger pressure applied to the microneedle baseplate for 30 s. A cylindrical 10 g stainless steel weight was placed on top of CIP_MN1 array to prevent expulsion of the microneedles, and the tissue paper was
PDF
Album
Full Research Paper
Published 15 Jun 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • Au(111) surface was prepared by argon sputtering for 10 min at 1 keV with a pressure of 3 × 10−6 mbar. Secondly, the treated substrate was annealed at 673 K for 1 h in order to obtain a flat substrate surface characterized by large gold terraces. When required, successive sputtering/annealing cycles
  • K and the substrate was held at room temperature. The chamber pressure during the evaporation process was ≈10−8 mbar and the evaporation time was ≈30 min. X-ray photoelectron spectroscopy was employed to monitor the existence of thiolates as well as physisorbed thiols. To remove physisorbed
  • by the rastering electron beam of an SEM, where the kinetic energy of the electrons was set to 1 keV. The SEM used is a modified type of a UHV Zeiss Standard Gemini with a Schottky-type thermal field emission source (ZrO/W). The pressure in the SEM column was ≈10−8 mbar. Prior to each experiment, the
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • Information File 1, Figure S2). Figure 2 shows the Nyquist plots of the impedance spectra (i.e., imaginary vs real part of the impedance Z) for both materials at 22 °C and 90% r.h., before and after thermal activation. The term “thermal activation” here stands for exposure to 80 °C at ambient pressure for 24
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • . Lifetime extension: Understanding the failure of the switch is the premise to improve the number of life cycles of switches. Mechanical tear, burn, and stiction are the main problems affecting the lifetime of NEM switches. A pressure of up to 30 GPa [51] when the switch is closed can easily cause wear and
  • 50 μs and can withstand 126 kPa pressure. Yıldırım et al. [73][74] used poly(para-xylene) to prepare a microvalve used in lab-on-chip devices. The pull-in voltage is 150 V and the valve can withstand pressure of 40 kPa. Desai et al. [75] and Patrascu et al. [76] designed a microvalve based on PDMS
  • with a pull-in voltage of 150 V and a pressure capacity of 23 kPa and a life cycle of 400 times. Atik et al. [77] prepared a normally closed valve on glass substrates as shown in Figure 8. The valve required an average voltage of 221 V, the response time was less than microseconds, and the lifecycles
PDF
Album
Review
Published 12 Apr 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • increased optical transmission [10][20][21]. In the magnetron sputtering process, it is possible to influence the properties of deposited films by varying the composition of the sputtering gas atmosphere, the total gas pressure, substrate temperature and bias, the target–substrate distance, the target power
  • two-element Zn/Al target and a pulsed (100 kHz) Dora Power Systems power supply, a MSS-10kW type. Films were deposited using a vacuum stand equipped with a diffusion pump (2000 L/s) and a rotary pump (30 m3/h). The ultimate pressure in the working chamber was about 3 × 10−5 mbar. A circular magnetron
  • working and reactive gases, namely argon and oxygen, with a ratio of 70:30, was introduced into the vacuum chamber through a set of needle valves (Figure 1). The total pressure during reactive sputtering processes was established at about pAr+O2 = 3 × 10−3 mbar. The power supplying the target (the
PDF
Album
Full Research Paper
Published 31 Mar 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • methods of MOF membrane preparation require multiple steps and high-pressure conditions. In this study, a reliable one-step interfacial synthesis method under atmospheric pressure has been developed to prepare zeolitic imidazolate framework-8 (ZIF-8) membranes supported on porous α-Al2O3 disks. To obtain
  • other side of the membrane was connected to a soap-film flow meter downstream to measure the gas permeation volume of the target gas. The pressure drop between feed side and permeation side was measured by a pressure meter (Bronkhorst EL-PRESS) and was kept at 20 psi. The temperature of the system was
  • kept at room temperature (25 °C). The permeance Pi (mol·m−2·s−1·Pa−1) of the permeation gas was determined using the following equation: where Ni (mol·s−1) is the permeation molar flow rate of component gas i, ΔPi (Pa) is the trans-membrane pressure drop of gas i, and A (m2) is the effective membrane
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • image that when a pressure of 3 MPa is applied to the PTFE surface at the top of the Cu nanoparticles, the surface structure of the PTFE polymer is bent (Figure 11). The large nanostructures on both edges are in contact with the polymer surface, but the small nanostructure in the middle is not in
  • can be concluded that nanocrystal strips can yield a good electron output. Due to the different surface contact charge densities of the copper nanoscale morphology, under pressure, the curved PTFE structure transfers more friction charges, which contributes greatly to improving the output performance
  • a pressure of 3 MPa. (d) Potential of the three TENG shapes considered here. Experimental parameters for the copper deposition.
PDF
Album
Full Research Paper
Published 15 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • , particularly as a combination therapy [10]. To leverage the endogenous properties of albumin, nab technology uses a high-pressure manufacturing process to force hydrophobic drugs into the internal hydrophobic pockets of human serum albumin (HSA) [11]. This leads to the formation of albumin-bound, paclitaxel
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • vs the substrate. The target–substrate distance was 14 cm. The unbalanced magnetic configuration system was applied. Before the deposition process, the working chamber was pumped to a base pressure of 10−3 Pa. Thin films were sputtered without additional intentional heating of the substrates during
PDF
Album
Full Research Paper
Published 24 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • during deformation [48][49]. No plastic strain occurs in this work, given the much higher yield strength of Zr-based MGs (approx. 1.7 GPa [50]) than that of copper (69–365 MPa [51]). The maximum contact pressure in this work is ca. 0.49 GPa (JKR model), smaller than the yield strength of MGs. As a
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • the temperature range from 300 to 360 K at 1 bar pressure under helium atmosphere in an optical continuous flow cryostat (Oxford Optistat CF). Optical switching experiments were performed by applying light with the discrete wavelength in the range of 440 to 540 nm using a Hg arc lamp and subsequent
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • direct route for both bandgap engineering and photoactivity enhancement. One strategy employed was high-pressure and high-temperature hydrogenation, resulting in reduced “black TiO2” (B-TiO2−x) nps with a crystalline center and a disordered surface that absorbs light in the visible range. Chen et al
PDF
Album
Review
Published 14 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • to develop sensors that were a wearable type of a goniometer. These sensors were then tested under static and dynamic conditions. For another application, researchers designed and developed a purely textile-based capacitive pressure sensor to be integrated and embedded into the garments to monitor
  • and measure human body pressure. These sensors were beneficial for pressure sore prevention, rehabilitation, and the detection of movement during activities. Further, these sensors were comfortable and bendable and were applied onto the upper portion of an arm to detect the deflection of the forearm
  • during muscle bending [8]. Park et al. [9] developed a self-powered piezoelectric sensor for monitoring the pulse rate in real time. A pressure sensor was attached to the epidermis for monitoring pulse and assessing personal health status. Traditional sensors for pulse monitoring can detect bio-signals
PDF
Album
Full Research Paper
Published 07 Feb 2022
Other Beilstein-Institut Open Science Activities