Search results

Search for "size distribution" in Full Text gives 511 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • applications, the stability of nanocomposites under ambient conditions is a key factor. Here, we measured zeta potential and the particle-size distribution for all stages of nanocomposite synthesis. The measurements were made in citric buffer (pH 4.4), in water (pH 6.2), and Tris buffer (pH 8.5) (Figure 1E
  • nanocomposites, AuNR-PDA-R123-folate, the DLS size-distribution at pH 8.5 was virtually the same as for AuNR-PDA particles (Figure S2F). What is more, with a decrease in pH value, the final nanocomposites demonstrated better stability and small variations in DLS size distributions (Figure S2G,H). Thus, we
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • ZnO [15][16]. Liang et al. [15] reported on the transformation of zincones deposited on TiO2 nanoparticles into porous ZnO via thermal treatment in the presence of air. Low surface area and wide pore size distribution (in the micropore and mesopore size range) were achieved. The surface area and the
  • al. [15] reported on the formation of mesoporous and microporous layers on nanoparticles coated with MLD zincone layers. In their contribution, the pore size distribution and surface area were reported as functions of the calcination temperature, showing a decrease in the overall porosity starting
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • samples while the lacunarity increases. The decrease of the fractal dimension is the consequence of the SiNWs flexibility and their tendency to bundle together. Consequently, it leaves bigger gaps that do not have the same width of the size distribution as in the case of dry samples. There are wider and
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • further carried out to measure the lattice spacing of the product. Figure 1c shows a lattice spacing distance of ca. 0.41 nm for the CsPbBr3 PNCs. The size distribution shown in Figure 1d indicates that the well-dispersed CsPbBr3 PNCs have an average diameter of ca. 11.7 nm. To explore the optical
  • using ultrasonication assistance. (a) XRD patterns. Black line and blue line represent experimental data and standard reference, respectively. (b) TEM image. (c) HRTEM image. (d) Size distribution. (e) UV–vis absorption spectrum (red line) and PL emission spectrum (blue line). Inset is a photograph
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • after exposure to air [24]. On the other hand conductivity is higher for samples annealed at 773 K in comparison to 573 K, which may be due to the variation in particle-size distribution. As discussed above, the particle sizes are small in samples annealed at 573 K whereas they are larger in samples
  • trend, but the values of S are smaller, which may be attributed to the formation of one type of mainly hexagonal nanoparticles with a wide size distribution as discussed in TEM results. Power factor (S2σ) Figure 7a,b shows the power factor (S2σ) in the temperature range 300–600 K (also given in Table 1
  • systematic investigation of temperature-dependent thermoelectric properties. Transmission electron microscopy revealed circular, hexagonal, tube-like structures for samples annealed at 573 K, whereas only hexagonal structures were visible for samples annealed at 773 K. The size distribution is also affected
PDF
Album
Full Research Paper
Published 04 Mar 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • images of Ag-G.b. substrates obtained with different sputtering time: (b) Ag-G.b.-5 substrate, (c) Ag-G.b.-10 substrate, (d) Ag-G.b.-15 substrate and (e) Ag-G.b.-20 substrate (the inset is the histograms of nanofilm size distribution of the Ag), (f) Ag-G.b.-25 substrate, respectively. (a) Raman spectra
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • dots. Particle size distribution of the synthesized CN nanoflakes and quantum dots. TEM image of CN nanoflake and quantum dot samples under heating at 190 °C for 5 h (a,b), 170 °C for 5 h (c,d), and 150 °C for 5 h (e,f). Field emission scanning electron microscopy images of the a) g-C3N4 nanosheet, b
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material

  • Lars Kool,
  • Anton Bunschoten,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2019, 10, 442–447, doi:10.3762/bjnano.10.43

Graphical Abstract
  • larger than 1.2 have been shown to possess dichroic properties [17]. Even a bimodal size distribution of spherical nanoparticles may present dichroism as well [18]. The presented synthesis is easy and fast, as it takes only few minutes to obtain the dichroic solution after the addition of the citrate
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • mass of the non-porous carbide core [15]. According to the IUPAC classification, the isotherm can be classified as type Ia suggesting a highly (ultra-)microporous material [27]. The pore size distribution (PSD) of the material was evaluated by using the quenched solid density functional theory (QSDFT
  • -metal graphitization catalyst on CDC/carbide core–shell precursors. (a) TEM analysis of partially chlorinated carbide (CDC-shell) showing transparent CDC covering the carbide core; (b) N2-sorption isotherm of the CDC-shell and inset of its QSDFT pore size distribution. (a) XRD pattern and (b) the
  • -sorption isotherm of final CDC material (closed and open symbols show the adsorption and desorption branches, respectively); (b) Pore size distribution of final CDC evaluated by QSDFT method. Examples of peak deconvolutions of XRD diffractograms at (a) C(002) and (b) C(100/101). Structural parameters of
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

One-step nonhydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials

  • Yanhui Wang,
  • P. Hubert Mutin and
  • Johan G. Alauzun

Beilstein J. Nanotechnol. 2019, 10, 356–362, doi:10.3762/bjnano.10.35

Graphical Abstract
  • of some macropores. As SEM images do not show the presence of macropores in TiP0.05 and TiP0.02 samples, these macropores likely correspond to pores between relatively small aggregates resulting from the grinding of the samples. The pore size distribution results confirmed the presence of mesopores
  • 77 K with a Micrometrics TriStar 3000 apparatus; the specific surface area was determined by the BET method in the 0.05–0.25 P/P0 range. The mesopore volume and pore size distribution were obtained by the Barrett–Joyner–Halenda (BJH) method from the desorption branch. Solid-state 31P magic angle
  • materials and TiO2. N2 physisorption isotherms at 77 K (left) and Barrett–Joyner–Halenda (BJH) mesopore size distribution (desorption branch, right) of TiO2–octylphosphonate hybrid materials and TiO2. Open and filled symbols in the isotherms refer to adsorption and desorption, respectively. Ideal reaction
PDF
Album
Full Research Paper
Published 05 Feb 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • [21][32], which contribute to the enthalpy (ΔH) of segregation. However, as shown in the previous work, the segregation process can be strongly influenced by the grain size distribution of the metal layer as well as its density profile [12], which may direct the segregation towards a specific
PDF
Album
Full Research Paper
Published 21 Jan 2019

Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation

  • Zahraa Shahin,
  • Hyewon Ji,
  • Rodica Chiriac,
  • Nadine Essayem,
  • Franck Rataboul and
  • Aude Demessence

Beilstein J. Nanotechnol. 2019, 10, 228–237, doi:10.3762/bjnano.10.21

Graphical Abstract
  • second weight loss of 1.3% from 250 °C is also seen and fits well with the decomposition of the glutathione molecules (Figure 2). The influence of calcination temperature on the particle size of the clusters deposited on ZrO2 was evaluated from the TEM images and size distribution analysis (Figure 3
  • below, with a narrow size distribution, upon calcination at temperatures up to 400 °C with 0.7 wt % Au loading. Catalytic performance The catalytic activity of Au25(SG)18@ZrO2, calcined at different temperatures, was studied for the oxidative dehydrogenation of benzyl alcohol to benzaldehyde in the
  • unable to oxidize benzyl alcohol to benzaldehyde. Despite the well-dispersed, homogenously small-sized gold particles, as seen from the TEM image (Figure 3a) and the size distribution graph (Figure 3e), their catalytic activity was likely to be affected by the presence of the thiolate ligands. The same
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2019

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

  • Imène Reghioua,
  • Mattia Fanetti,
  • Sylvain Girard,
  • Diego Di Francesca,
  • Simonpietro Agnello,
  • Layla Martin-Samos,
  • Marco Cannas,
  • Matjaz Valant,
  • Melanie Raine,
  • Marc Gaillardin,
  • Nicolas Richard,
  • Philippe Paillet,
  • Aziz Boukenter,
  • Youcef Ouerdane and
  • Antonino Alessi

Beilstein J. Nanotechnol. 2019, 10, 211–221, doi:10.3762/bjnano.10.19

Graphical Abstract
  • nanoparticles with irregular shapes. For both spherical and irregular particles, a broad size distribution is measured. Indeed, we have spherical particles with diameter of ≈10 nm up to particles of about 100 nm. Similarly, for the irregular ones the sizes range from a few tens up to about 100 nm. The state of
PDF
Album
Full Research Paper
Published 16 Jan 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • lysozyme. Based on this data we determined the initial form factor (size distribution) of the silica NPs prior to mixing with lysozyme (Figure 1B). The scattering pattern in a log–log representation prominently flattens out at low q (i.e., ). This shows that the initial silica NPs were not aggregated and
  • well-suspended. We derived a discrete size distribution (histogram in the inset of Figure 1B) for the NPs from the Monte Carlo fit implemented [29][30] in MCSAS under the a priori assumption that the NPs were spherical in shape [31] (physicochemical parameters of amorphous silica given in Table S1
  • , Supporting Information File 1). The as-obtained histogram indicated that the size distribution was relatively narrow with a mean radius of 2.53 ± 0.01 nm (distribution statistics given in Table S2, Supporting Information File 1). The total integrated volume fraction for the NPs obtained from the fit, was
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019

pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

  • Emilie Molina,
  • Mélody Mathonnat,
  • Jason Richard,
  • Patrick Lacroix-Desmazes,
  • Martin In,
  • Philippe Dieudonné,
  • Thomas Cacciaguerra,
  • Corine Gérardin and
  • Nathalie Marcotte

Beilstein J. Nanotechnol. 2019, 10, 144–156, doi:10.3762/bjnano.10.14

Graphical Abstract
  • pore size distribution (PSD) calculated from the adsorption branch by the NLDFT method (Figure S3 in Supporting Information File 1). Within that pH range, the mean pore diameter (dpore) and mesopore volume (Vmeso) slightly increase with pH (Table 1). When the synthesis was performed at 1.9 wt % of DHBC
  • wt % DHBC: lattice parameter (d0), pore diameter (dpore), full width at half maximum of the pore size distribution (∆d1/2), mesoporous volume (Vmeso), external surface area (Sext) of the particles and particle size (dparticle). Chemical composition of the as-synthesized hybrid materials synthesized
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • higher than the pore volume of the micropores (Table S1, Supporting Information File 1). The size distribution of the mesopores is broad (Figure S1, Supporting Information File 1) with the main fraction of pores between 2 and 8 nm. Similar to the total surface area, the PSD is independent of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • size distribution for all samples. In addition, HRTEM imaging for the anchored iron oxide nanoparticles on the MWCNTs surface was performed and the selected area electron diffraction (SAED) pattern for was identified, as shown in Figure 4. The image shows the high crystallinity of the prepared iron
  • nanoclusters. This is shown in Figure 9a. In addition, the nanocluster size distribution can be found in Supporting Information File 5, Figure S5. It can be concluded that the nanocluster size increases with increasing calcination time. Also, the Raman spectra for pristine CNTs along with decorated samples of
  • Information File 10: Teflon gas sensing chamber allowing for 4 different sensors together for gas sensing. Supporting Information File 11: Effect of first decoration step on carbon nanotube morphology. Supporting Information File 12: Nanoparticle size distribution histograms. Acknowledgements This work has
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • -Magurele, Romania Ovidius University of Constanta, Mamaia Avenue no. 124, 900524, Constanta, Romania 10.3762/bjnano.10.2 Abstract Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a
  • at the nanoscale – the so called "quantum size effect". Therefore, it is very important to synthesize nanoparticles with a narrow size distribution and with a desired mean diameter in order to control their optical and electrical properties [1]. The properties that make nanometer-sized SnO2 highly
  •  3a, a high-resolution TEM (HRTEM) image of a Zn/F-doped SnO2 sample (labeled ZTO0.44) and its mean size distribution (inset in Figure 3a) are presented. The polyhedral crystalline tin dioxide aggregated nanoparticles can be clearly seen in the HRTEM image. Also, a very thin disordered layer can be
PDF
Album
Full Research Paper
Published 02 Jan 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • (composite of weakly or medium strongly bound particles), in which for 50% or more of the particles in the number size distribution one or more external dimensions is at the nanoscale [3]. According to the current state of knowledge, aggregates and agglomerates of the nanoobjects (NOAA) that are bigger than
  • they formed stable, spherical agglomerates with a narrow size distribution. All GoHAp samples exhibited aggregates with sharp edges and agglomerates with a very wide size distribution (visible in the results as high values of standard deviation). HApSA and HApSA+Si form irregular agglomerates built
  • . The narrow size distribution of their NOAA facilitates their intake by the cells. The low solubility of F201 and F202 could cause a retention of calcium phosphate deposits inside the cells, a kind of “cell stones”, similar to the deposition of macroscale calcium-phosphate stones in the kidneys. Such
PDF
Album
Full Research Paper
Published 27 Dec 2018

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • narrow particle size distribution (Figure 2 and Figure 3). Increasing the temperature to 120 °C resulted in the formation of longer nanoparticles (Figure S2, Supporting Information File 1). Unfortunately, all attempts to control the nanoparticle length failed and therefore we focused on the smaller
  • dynamic light scattering (DLS, Figure S3A, Supporting Information File 1). In water, nanoICR-2 forms aggregates with a mean value of the size distribution of 87 ± 31 nm (by number, Z-average = 136 nm, PDI = 0.12). The zeta potential of nanoICR-2 in water is slightly positive with an average of 5 ± 5 mV
  • 30 nm is virtually unchanged from the parent nanoparticles. The analysis of TEM data confirmed the preservation of the particle size (29 nm on average), only the particle size distribution was broader (Figure 2). DLS experiments with aqueous dispersions of nanoICR-2/porphyrin revealed the formation
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • special attention to alendronate release under photothermal activation. Au@alendronate NPs characterization: (a) transmission electron microscopy (TEM) image (left) and size distribution (right), (b) UV–vis spectrum, (c) FTIR spectra of Au@alendronate NPs (red curve) versus alendronate (black) curve, (d
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • layer (see Figure 1a). However, experimentally a more homogeneous size distribution and a clear separation in two bands of NCs is observed. In contrast, for the case of a thinner oxide, the stoichiometry does not only change close to the interfaces, but also in the middle of the oxide layer. After a
  • Figure 3a,d one can see that the NCs formed under these conditions are not well defined and are subject to a rather large size distribution (not shown in this diagram). We conclude that for these cases either insufficient mixing or the onset of NC dissolution, respectively, leads to the observed broad NC
  • size distribution. The self-assembly of a single δ-layer of unimodal Si NCs in the middle of the 7 nm SiO2 layer requires a fluence of approximately 170 Si+/nm2 and an intermediate thermal budget between 70 × 10−19 cm2 and 200 × 10−19 cm2. Comparing the best result obtained (Figure 3e) to the predicted
PDF
Album
Full Research Paper
Published 16 Nov 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • smooth facets. No nanoparticles are observed and the UC nanorods exhibit a monodisperse size distribution. On average, they are ca. 200 nm in diameter and ca. 1.5 μm in length. According to the X-ray diffraction (XRD) patterns in Figure 1b, with increasing reaction time, reflections of the hexagonal β
PDF
Album
Full Research Paper
Published 31 Oct 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • backward scattering mode. The primary data were derived from the correlation function of the scattered intensity as a number-weighed size distribution. Ultraviolet–visible (UV–vis) spectroscopy was performed with a Varian Cary 300 instrument from 200 to 800 nm with background correction. Suprasil® cuvettes
  • synthesis by-products that were not completely replaced by the stabilizing agent PVP [85]. Figure 1 and Figure 2 show the particle size distribution data from DLS and DCS, respectively. The average hydrodynamic diameter of the water-dispersed nanoparticles represents the diameter of the solid metallic core
  • chemically inert and do not release toxic ions. Particle size distribution of PVP-stabilized noble metal nanoparticles determined by dynamic light scattering (DLS). All data are given as size by number and are normalized for better comparison. The polydispersity index (PDI) was between 0.1 and 0.3 in all
PDF
Album
Full Research Paper
Published 29 Oct 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • selection, size distribution, degree of crystallinity and faceting. The size distribution of the magnetite–gold NPs was measured based on a series of TEM images. The average NP diameter and standard deviation (SD) values are presented in Table 1. The size histograms are provided in Supporting Information
  • ZFC/FC curves. With increasing NP size, the superparamagnetic blocking temperature (TB) increases from 62 K for MNP-6 to 210 K for MNP-15, as identified by the maximum of the ZFC branch. However, the rather broad size distribution of 10–20% (Table 1) and corresponding volume distributions result in
  • as the mean ± SD, **p < 0.01, ***p < 0.001 (one-way ANOVA). Results of the structural and morphological characterization by TEM and XRD. The NP size distribution, volume fraction of Fe3O4 and Au, lattice parameter (a), and crystallite size are listed. Mass fraction of Fe3O4 and Au in the samples, as
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018
Other Beilstein-Institut Open Science Activities