Search results

Search for "transfer" in Full Text gives 955 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • , due to the presence of vibrational overtones and combinational modes in the UV–vis absorption spectrum of liquid water. Woutersen and Bakker [21] showed that fast intermolecular transfer of vibrational energy is present only in structured systems, such as the hydrogen bond network in liquid water
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • transfer with the oxide substrate was observed, involving both the macrocycle and the central metal atom. For molecules of the first monolayer, an electron transfer to the central metal atom is concluded from transition metal 2p core level photoemission spectra. The number of interacting molecules in the
  • first monolayer on the oxide surface depends on the central metal atom of the phthalocyanine, whereas the substrate preparation has minor influence on the interaction between CoPc and SrTiO3(100). Differences of the interaction mechanism to related TiO2 surfaces are discussed. Keywords: charge transfer
  • properties. Hence, TMPcs are well suited for systematic studies of interface properties. The fluorination of TMPcs varies exceptionally the ionization potential (IP), affecting distinctly the interface properties [29][30][31][32]. As recently shown for FePcFx/MoS2 [33], a charge transfer at interfaces might
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • structure allows for the catalyst to have a higher specific surface area and more active sites, which can simultaneously promote mass transfer and charge separation in nanodomains, thus optimizing the π-conjugated system for photochemical applications [40][41]. Furthermore, elemental mapping of nitrogen
  • the EIS spectrum is related to the charge-transfer resistance at the electrode–electrolyte interface [71]. The EIS arc radius of Cl-PCN is smaller than that of PCN. Its impedance is reduced compared to PCN, indicating that Cl doping decreased the charge-transfer resistance of polymeric carbon nitride
  • . It further indicates that Cl doping can promote transfer and separation of the photogenerated carriers [55], which agrees with the photoluminescence spectroscopy results and transient photocurrent response. The improved transport and separation can be affected by Cl atoms acting as a charge carrier
PDF
Album
Full Research Paper
Published 19 May 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • correlated with the temperature, as shown in Figure 5d. In addition, we measured the PCE (η) of AuNRs and Au@Pt NRs according to the model proposed by Roper et al. [41]: where h is the heat-transfer coefficient, A is the irradiated surface area of the cuvette, Tmax and Tmin are the maximum and minimum steady
PDF
Album
Full Research Paper
Published 17 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • not exert their antibacterial effects in a single specific location, but rather at several levels (e.g., in the bacterial wall and by blocking electron transfer, in cell respiration and replication due to the damage to the proteins, RNA, and DNA [8][107]). In addition, there is substantial evidence
PDF
Album
Supp Info
Review
Published 14 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • Information File 1. These EIS features represent the charge transfer at the electrode–electrolyte interface (Rct) and the Warburg impedance (W), which is attributed to the diffusion of Li+ ions in the bulk electrode material [25][38]. The plots for the cycled cell are slightly different. They are composed of
  • represent the charge transfer at the electrode–electrolyte interface (Rct) and the Warburg impedance (W), respectively. The semicircle at high frequencies is mainly attributed to SEI resistance (RSEI) and contact resistance (Rf) [13][15][20][21][25][38]. At this point, it should be also mentioned that the
  • decreased for the cycled cell. This indicates that the charge transfer reaction has been improved due to cycling. Also, a slight cycle-to-cycle increase of Rct as well as of RSEI is observed for the cycled sample. This phenomenon might be explained by the growth of the SEI layer, which provides some
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • that include, but are not limited to, turbulent flow, heat and mass transfer, dendritic formation, and biological growth [1][2][3][4][5][6][7][8][9][10]. According to this law: “For a flow system to persist in time (to live), it must evolve in such a way that it provides easier access to the imposed
PDF
Album
Full Research Paper
Published 06 May 2021

A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications

  • Hui Li,
  • Yaju Zhang,
  • Yonghui Wu,
  • Hui Zhao,
  • Weichao Wang,
  • Xu He and
  • Haiwu Zheng

Beilstein J. Nanotechnol. 2021, 12, 402–412, doi:10.3762/bjnano.12.32

Graphical Abstract
  • equilibrium between the SCGMs and ground is re-established, no output signal can be observed (Figure 2a-IV). When the frictional layer is close to the silicone rubber, the electrons will transfer from ground to the SCGMs and generate a positive potential through the triboelectric effect. Finally, the charge
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • , which leads to a rapid electron transfer from the surface reaction of the target gas with the MOS to the electrodes [35]. Additionally, MOS and graphene can form junctions at their interface. For example, p–p homojunctions can be formed between NiO and rGO to increase the gas sensing responsivity and
  • graphene and metal oxide. In the case of reduced graphene oxide (semiconductor), various reasons are considered, such as the appearance of p–n junctions that shift the Fermi level of the oxide. There is evidence of effective charge transfer between graphene and nanospheres through chemical bonds. Emergence
  • of conducting channels from graphene layers is also pointed out, which increase the efficiency of charge carrier transfer in composites [8]. Based on the known literature data and the results obtained, it is possible to provide potential reasons for an enhancement of the sensitivity in the case under
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • nanostructures by investigating the fabrication and transfer on the example of a SAM of TPT on a silver substrate. Consequently, a different chemical etching process is needed for the lift-off process during the transfer. In the case of gold, an etching solution of KI/I2/H2O is used. Whereas in this approach
  • functionalized 2D CNMs can be fabricated. In a recent study, it was reported that it is possible to fabricate nanostructures on a TPT/Au system and transfer the nanostructures on top of the CNM onto arbitrary substrates. In these experiments the nanostructures retained their shape and did not undergo any changes
  • , aside from oxidation, during the transfer process [21]. In this work, we studied a new system by using TPT SAMs on Ag instead of the analogue SAMs on Au. The main difference caused by changing the substrate is the different wet-chemical etching solution that is necessary for the lift-off process. For
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • combination with a thermal stability up to 2600 K [50], renders graphene an exciting candidate for room-temperature bolometry [51]. Single-layer graphene was grown by chemical vapor deposition onto a multicrystalline copper foil using methane as precursor gas at 1035 °C. For the transfer process, the graphene
  • sheet was covered by a 500 nm thick PMMA layer. After etching the copper foil, the graphene sheet was transferred onto a SiN membrane with a regular grid of holes. The transfer process is described in detail elsewhere [52]. The SiN membrane was covered with a thin layer of gold, which allowed us to
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • prepared by simple wet chemistry. A polymer was electrostatically conjugated, which facilitates the loading of DOX and its phototriggered release inside cancer cells in acidic environment. A comparatively good photothermal transfer ability has been achieved at a very low power density of 1.5 W/cm2 of NIR
PDF
Album
Full Research Paper
Published 31 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • proteins were boiled in Laemmli buffer and separated on a 10% polyacrylamide SDS-PAGE gel. After transfer of proteins onto nitrocellulose membranes the following primary antibodies were used: anti-Clathrin Heavy Chain (P1663) (#2410), anti-Caveolin-1 (#3238), anti-Phospho-Caveolin-1 (Tyr14) (#3251), anti
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • including the gap. Apart from that, we find relatively high step edges of ca. 1 µm and above, which we attribute to ordinary or trailing edges of osteoblastic cells (Figure 9a). An elegant method to measure the cell–surface gap at confocal resolution is metal-induced energy transfer (MIET) where the
PDF
Album
Full Research Paper
Published 12 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • scanning probe microscopes [1][2][3]. At the same time, however, metallic substrates usually influence the properties of adsorbed molecular species, leading to hybridization, charge transfer, or screening at the interface [4][5][6]. Also, metallic surfaces may provide relatively weak binding, dominated by
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • growth [117] and development. The fat body of the silkworm is responsible for the storage, utilization, and transfer of the nutrients required for the growth and development of the silkworm larvae [118]. Tian et al. [119] focused on studying the impact of 5 mg/L of TiO2 NPs on the nutrient metabolism of
PDF
Album
Review
Published 12 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • several typical examples in which P-TENGs are used. This paper starts with an overview of TENGs and the corresponding working mechanism of four basic working modes based on charge transfer and on the electron-cloud potential-well model. Regarding surface modification and fabrication methods involving
  • and highly efficient energy-harvesting systems. To conclude the review, perspectives and proposals regarding future potential applications and research directions are discussed. Review Four working modes of TENGs and charge-transfer mechanisms TENGs, which are emerging and efficient apparatus for
  • (most common design in previous works) as a typical representative example, we further systematically analyze the working mechanism of the detailed charge-transfer process. Figure 2b elucidates the charge generation and the electron-transfer process at the friction interfaces (paper/the other dielectric
PDF
Album
Review
Published 01 Feb 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • each profile as fitting parameters. The continuous profiles are discretized in layers thin enough to give the smoothest possible variation and then the transfer matrix technique [27] is used to simulate the reflectance of the structure. This is actually a similar process as that used by Vukusic and
PDF
Album
Full Research Paper
Published 28 Jan 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • to the short residence time inside the reactor and finite heat transfer from the wall [124]. In general, although physical methods can produce nanoparticles with high purity, most of them are very expensive and may lead to agglomeration of products [140]. Based on all the disadvantages explained here
PDF
Album
Review
Published 25 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • molecules. In order to transfer this concept to bodies much larger than molecules, a further step is needed. This was carried out by Hamaker, who used a pairwise summation approximation to investigate the interactions between bodies, leading to the Hamaker coefficient AHam [41]. Consequently, the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • . Therefore, different electrical components contribute to the equivalent circuit of the EIS results. Warburg element, charge transfer resistance (Rct), and equivalent series resistance (ESR) are some of the elements that contribute to the resistive behavior [11]. At this point, we highly suggest to the
  • layered thick solids and, thus, do not contain spaces for the penetration of Li ions into the electrode [15]. Therefore, to enhance the performance of MXene supercapacitors an increased ion transfer rate is needed [18][23]. MXenes exhibit two major changes due to the removal of the A layer from the
  • ) oxide (Fe2O3), may be used to increase the layer spacing, which directly increases the ion transfer rate [16][17][18]. In other words, the intercalation or modification of MXenes helps to prevent the possibility of stacking, increases ion adsorption sites, and enhances electrochemical properties [19][22
PDF
Album
Review
Published 13 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • transfer from ethanol to water, as reported in several publications [51][52], and, consequently, their hydrodynamic diameter values increased. The zeta potential of the non-functionalized particles is more negative in water than in ethanol, and, in this case, the Z-average value also increases. The Z
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • , Technická 5, 166 28 Prague 6, Czech Republic 10.3762/bjnano.12.2 Abstract Al2O3 layers were deposited onto electrodes by atomic layer deposition. Solubility and electron-transport blocking were tested. Films deposited onto fluorine-doped tin oxide (FTO, F:SnO2/glass) substrates blocked electron transfer to
  • better the blocking. This approach has been used previously [18][19][20] for testing semiconducting nonporous blocking layers of oxides (TiO2 or SnO2) deposited onto FTO. In this way, direct electron transfer between the redox couple in the electrolyte solution and the conducting substrate (i.e., FTO
  • absorber (sensitizing dye or perovskite) to the negative terminal of the solar cell, usually an FTO or a similar transparent conducting oxide. At the same time, this layer blocks the back electron transfer from the current collector (FTO) to the electrolyte redox mediator, to the hole-transporting medium
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • spectrometry (SIMS) A major disadvantage of using standard HIM rather than SEM is the lack of analytical detectors for elemental quantification, such as EDX. This is because 30 keV helium ions cannot transfer enough energy to the bound inner-shell electrons of the sample to excite them out of the core states
  • aspects of microbe–mineral interactions, such as the formation of intra- or extracellular mineral precipitates, or intracellular organelles associated with energy gain or electron transfer [92]. However, over recent years, the number of articles related to geomicrobiology and containing HIM data has
PDF
Album
Review
Published 04 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • manganese ferrite nanoparticles inside the tubes is observed as a shift in the X-ray diffraction peaks and as an increase in stress, hyperfine field, and coercivity when compared to free manganese ferrite nanoparticles. On the other hand, a strong charge transfer from the multiwall carbon nanotubes is
  • ferrite nanoparticles in comparison to free manganese ferrite nanoparticles, which leads to an enhancement of the metallic properties. Keywords: carbon nanotubes; charge transfer; manganese ferrite; metallic nanoparticles; partial encapsulation; stress; surface; Introduction Since the discovery of
  • the change in intensity of the emitted electrons from the π band to a strong charge transfer between MWCNTs and the functionalized materials [37]. In our case, the π band signal in MnFe2O4/MWCNTs is obscured by the presence of the Mn 3d signal, which makes it difficult to draw any conclusion related
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020
Other Beilstein-Institut Open Science Activities