Search results

Search for "nickel" in Full Text gives 234 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Recent advances in total synthesis of illisimonin A

  • Juan Huang and
  • Ming Yang

Beilstein J. Org. Chem. 2025, 21, 2571–2583, doi:10.3762/bjoc.21.199

Graphical Abstract
  • enantioenriched compound 33, a nickel-catalyzed hydrocyanation of the terminal alkyne was performed. Subsequent protection of the tertiary alcohol with TESOTf and reduction of the resulting cyanide to an aldehyde afforded compound 34 (Scheme 4). Addition of isopropenyllithium to aldehyde 34, followed by TES
PDF
Album
Review
Published 20 Nov 2025

Total syntheses of highly oxidative Ryania diterpenoids facilitated by innovations in synthetic strategies

  • Zhi-Qi Cao,
  • Jin-Bao Qiao and
  • Yu-Ming Zhao

Beilstein J. Org. Chem. 2025, 21, 2553–2570, doi:10.3762/bjoc.21.198

Graphical Abstract
  • resulting intermediate was directly subjected to Raney nickel desulfurization, reducing the C8 carbonyl to a methylene group and delivering compound 116. Finally, oxidation of the secondary alcohol, dimethyl ketal deprotection, and hydroxy-directed reduction installed the C3 hydroxy group and inverted the
PDF
Album
Review
Published 19 Nov 2025

Ni-promoted reductive cyclization cascade enables a total synthesis of (+)-aglacin B

  • Si-Chen Yao,
  • Jing-Si Cao,
  • Jian Xiao,
  • Ya-Wen Wang and
  • Yu Peng

Beilstein J. Org. Chem. 2025, 21, 2548–2552, doi:10.3762/bjoc.21.197

Graphical Abstract
  • Abstract The total synthesis of bioactive (+)-aglacin B was achieved. The key steps include an asymmetric conjugate addition reaction induced by a chiral auxiliary and a nickel-promoted reductive tandem cyclization of the elaborated β-bromo acetal, which led to the efficient construction of the
  • aryltetralin[2,3-c]furan skeleton embedded in this natural product. Keywords: aryltetralin; conjugate addition; cyclolignan; nickel; reductive coupling; Introduction Proksch and co-workers isolated aglacins A, B, C, and E (1–4, Figure 1) from the methanolic extract of stem bark of Aglaia cordata Hiern from
  • synthesis of both enantiomers of aglacins A (1), B (2), and E (4) by asymmetric photoenolization/Diels–Alder reactions as the key steps for the construction of the C7–C8 and C7′–C8′ bonds [8]. During the past decade, we had developed nickel-catalyzed or -promoted reductive coupling/cyclization reactions for
PDF
Album
Supp Info
Letter
Published 18 Nov 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • -photocatalysts [10][11][12] have been successfully incorporated into enantioselective radical reactions. The use of transition metals to catalyze enantioselective radical reactions can be considered a major advancement in the field of asymmetric catalysis. Several metals such as cobalt, nickel, copper, and
  • titanium have been employed successfully to catalyze enantioselective radical reactions. Two earth abundant transition metals that have found extensive application in enantioselective radical reactions are copper and nickel. These metals, particularly Ni, can be used in radical–radical coupling reactions
  • ) should enable the development of methodologies that expand radical transformations to a larger number of substrates in green and sustainable ways. Nickel is an earth-abundant transition metal that has been used in several organic transformations [49][50][51][52]. Chiral nickel catalysts have been
PDF
Album
Perspective
Published 28 Oct 2025

Pathway economy in cyclization of 1,n-enynes

  • Hezhen Han,
  • Wenjie Mao,
  • Bin Lin,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2025, 21, 2260–2282, doi:10.3762/bjoc.21.173

Graphical Abstract
  • 157. In 2021, the Zhou group reported a nickel-catalyzed cyclization strategy using N-(o-ethynylaryl)acrylamides as substrates, achieving divergent access to dihydrocyclobuta[c]quinolin-3-ones and benzo[b]azocin-2-ones (Scheme 33) [46]. The reaction pathway was governed by thermal modulation, wherein
  • 60 °C initiated nickel-mediated intramolecular [2 + 2] cycloaddition to form dihydrocyclobuta[c]quinolin-3-one framework 164. Conversely, when the temperature was elevated to 140 °C, thermal ring-expansion of the four-membered intermediate was induced through C–C bond cleavage/reorganization
PDF
Album
Review
Published 27 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
  • kinetics studies, the cross-aldol reaction of formaldehyde and acetaldehyde gives a higher yield of 3-HPO than the self-aldol reaction of acetaldehyde. Moreover, Raney nickel was applied successfully for the conversion of 3-HPO to 1,3-PDO with good yield and about 90% conversion rate of 3-HPO (Scheme 13
  • generation of other hydrogenation products than in organic solvents [199]. Since this new route to CPN from furfural was reported in 2012, many catalysts have been proposed for promoting this reaction. Recent works include heterogeneous systems based on cobalt [200], nickel [201], copper [202] or palladium
PDF
Album
Review
Published 15 Oct 2025

Photoswitches beyond azobenzene: a beginner’s guide

  • Michela Marcon,
  • Christoph Haag and
  • Burkhard König

Beilstein J. Org. Chem. 2025, 21, 1808–1853, doi:10.3762/bjoc.21.143

Graphical Abstract
  • (37) followed by reduction with Zn/Ba(OH)2 and partial re-oxidation (Scheme 12A) [52]. They can also be obtained from o-halogenated benzyl bromides 40 by lithium–halogen exchange followed by nucleophilic substitution and a second lithium–halogen exchange with iodine (Scheme 12B) or by nickel-catalysed
PDF
Album
Review
Published 08 Sep 2025

Photocatalysis and photochemistry in organic synthesis

  • Timothy Noël and
  • Bartholomäus Pieber

Beilstein J. Org. Chem. 2025, 21, 1645–1647, doi:10.3762/bjoc.21.128

Graphical Abstract
  • , the combination of nickel catalysis and photoredox catalysis has become one of the most studied strategies to forge carbon–carbon bonds. The groups of Soengas and Rodríguez-Solla used this strategy to develop a general method for the synthesis of enaminones [32]. Light-induced transition metal
PDF
Album
Editorial
Published 18 Aug 2025

3-Aryl-2H-azirines as annulation reagents in the Ni(II)-catalyzed synthesis of 1H-benzo[4,5]thieno[3,2-b]pyrroles

  • Julia I. Pavlenko,
  • Pavel A. Sakharov,
  • Anastasiya V. Agafonova,
  • Derenik A. Isadzhanyan,
  • Alexander F. Khlebnikov and
  • Mikhail S. Novikov

Beilstein J. Org. Chem. 2025, 21, 1595–1602, doi:10.3762/bjoc.21.123

Graphical Abstract
  • reaction, in which 2H-azirines act as the annulation reagent. Keywords: annulation; azirines; benzothiophenes; indoles; nickel catalysis; Introduction 2H-Azirines represent a valuable class of nitrogen heterocycles that are widely used as versatile building blocks in organic synthesis. In particular, the
  • reaction carried out in the presence of 5 mol % of NiSO4 gave not only dimer 4, but also the annulation product, compound 3a. Further optimization of the reaction conditions aimed at suppressing the formation of dimer 4 showed that nickel chelates exhibit enhanced selectivity in catalyzing the annulation
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2025

General method for the synthesis of enaminones via photocatalysis

  • Paula Pérez-Ramos,
  • Raquel G. Soengas and
  • Humberto Rodríguez-Solla

Beilstein J. Org. Chem. 2025, 21, 1535–1543, doi:10.3762/bjoc.21.116

Graphical Abstract
  • intermediates in the synthesis of several derivatives with important applications in medicinal chemistry. Furthermore, many marketed drugs feature the enaminone structural moiety. In this context, we have developed a photoredox and nickel catalytic system to rapidly forge the enaminone scaffold from 3
  • ; enaminones; nickel; photocatalysis; Introduction Enaminones are relevant intermediates in organic chemistry and the pharmaceutical industry [1][2][3][4][5][6]. These enamines have a carbonyl group conjugated to a carbon–carbon double bond, owing its great versatility in organic synthesis to its ability to
  • enaminones has attracted much attention over the past decades. Kuwano’s group described the synthesis of enaminones from ethyl ketones via a nickel-catalyzed selective β-amination (Scheme 1A) [31]. The preparation of enaminones can also be achieved by the reaction of aldehydes and calcium carbide in the
PDF
Album
Supp Info
Letter
Published 29 Jul 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
  • co-workers reported an unprecedented synthesis of 3-aryl-3-aminooxetanes 156 from amino acids 155 utilising a combination of photoredox and nickel cross-coupling catalysis (Scheme 39) [90]. The reaction uses low catalyst loadings, gives moderate to excellent yields and tolerates various functional
PDF
Album
Review
Published 27 Jun 2025

Recent advances and future challenges in the bottom-up synthesis of azulene-embedded nanographenes

  • Bartłomiej Pigulski

Beilstein J. Org. Chem. 2025, 21, 1272–1305, doi:10.3762/bjoc.21.99

Graphical Abstract
  • to 900 nm. The Yamamoto homocoupling reaction catalysed by low-valent nickel compounds [103] may be used instead of Scholl-type oxidation in the synthesis of azulene-embedded PAHs. Yamada and co-workers very recently reported the synthesis of azulene dimer 172 (Scheme 22) [104]. Initially, the
PDF
Album
Review
Published 26 Jun 2025

Recent advances in oxidative radical difunctionalization of N-arylacrylamides enabled by carbon radical reagents

  • Jiangfei Chen,
  • Yi-Lin Qu,
  • Ming Yuan,
  • Xiang-Mei Wu,
  • Heng-Pei Jiang,
  • Ying Fu and
  • Shengrong Guo

Beilstein J. Org. Chem. 2025, 21, 1207–1271, doi:10.3762/bjoc.21.98

Graphical Abstract
  • -bond cleavage to generate halomethyl radicals, which were then captured by acrylamides, leading to the formation of various halogenated oxindoles 90 via radical cyclization. The optimized reaction conditions involved an undivided electrochemical cell with a carbon felt anode and a foam nickel cathode
PDF
Album
Review
Published 24 Jun 2025

Salen–scandium(III) complex-catalyzed asymmetric (3 + 2) annulation of aziridines and aldehydes

  • Linqiang Wang and
  • Jiaxi Xu

Beilstein J. Org. Chem. 2025, 21, 1087–1094, doi:10.3762/bjoc.21.86

Graphical Abstract
  • of racemic and optically active functionalized cis-2,5-diaryloxazolidine derivatives [13][14][15][16]. Racemic cis-2,5-diaryloxazolidine derivatives were prepared under the catalysis of zinc triflate or nickel diperchlorate (Scheme 1a) [13][14]. Later, highly enantiomeric cis-2,5-diaryloxazolidine
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • nickel–hydride species (Scheme 82B) [140]. Furthermore, metal-free catalyzed partial hydrogenations of alkynes have also been explored. For instance, Santos and co-workers (2019) employed B2Pin2 to mediate the partial hydrogenation of alkynoic acids to generate the corresponding trans-cinnamic acids 377
PDF
Album
Review
Published 28 May 2025

Recent advances in controllable/divergent synthesis

  • Jilei Cao,
  • Leiyang Bai and
  • Xuefeng Jiang

Beilstein J. Org. Chem. 2025, 21, 890–914, doi:10.3762/bjoc.21.73

Graphical Abstract
  • obtained with exclusive regioselectivity and excellent enantioselectivity. Employing a nickel catalyst, α-chiral β-amino acid derivatives 27 were synthesized with single regioselectivity and outstanding enantioselectivity. In the same year, Rong and co-workers reported a highly efficient catalyst
  • C(sp3)–C(sp3) coupling via distal stereocontrol, efficiently producing C3-alkylated pyrrolidines, while the nickel catalytic system afforded C2-alkylated pyrrolidines through a tandem alkene isomerization/hydroalkylation process. This method utilized readily accessible catalysts, chiral BOX ligands
  • insertion to achieve C3 selectivity, whereas nickel catalysis involved alkene isomerization to generate a (2,3-dihydropyrrolyl) intermediate Int-35, followed by C2-selective coupling. In 2024, the Zheng group reported a catalyst-controlled cyclization reaction of bicyclo[1.1.0]butanes (BCBs) 32 with α
PDF
Album
Review
Published 07 May 2025

Regioselective formal hydrocyanation of allenes: synthesis of β,γ-unsaturated nitriles with α-all-carbon quaternary centers

  • Seeun Lim,
  • Teresa Kim and
  • Yunmi Lee

Beilstein J. Org. Chem. 2025, 21, 800–806, doi:10.3762/bjoc.21.63

Graphical Abstract
  • catalytic hydrocyanation of alkenes [22], including the industrially relevant DuPont adiponitrile process from 1,3-butadiene using nickel catalysts [23], the hydrocyanation of allenes to produce functionalized β,γ-unsaturated nitriles with quaternary carbon centers has not been investigated extensively [24
  • to four possible regioisomeric products. Recent research has addressed some of these challenges. Arai [25][26], Fang [27] and Breit [28] investigated the nickel-catalyzed regio- and enantioselective hydrocyanation of 1,1-disubstituted allenes using acetone cyanohydrin or TMSCN/MeOH as the precursor
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2025

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • synthesis of various organophosphorus compounds through the formation of phosphorus–carbon, phosphorus–nitrogen, phosphorus–oxygen, phosphorus–sulfur, and phosphorus–selenium bonds. The impact of different electrodes is also discussed in this matter. Graphite, platinum, RVC, and nickel electrodes have been
  • , phosphorus–sulfur, and phosphorus–selenium bonds. The impact of different electrodes is also discussed in this matter. Graphite, platinum, reticulated vitreous carbon (RVC), and nickel electrodes have been used extensively for the electrochemical synthesis of organophosphorus compounds. Review
  • electrode with the reaction solution. The oxidation–reduction process complements each other, and the surface of the electrode in the reaction is critical. The material of the electrode is essential [44]. Various electrodes, including carbon (C), platinum (Pt), nickel (Ni), and reticulated vitreous carbon
PDF
Album
Review
Published 16 Apr 2025

Asymmetric synthesis of fluorinated derivatives of aromatic and γ-branched amino acids via a chiral Ni(II) complex

  • Maurizio Iannuzzi,
  • Thomas Hohmann,
  • Michael Dyrks,
  • Kilian Haoues,
  • Katarzyna Salamon-Krokosz and
  • Beate Koksch

Beilstein J. Org. Chem. 2025, 21, 659–669, doi:10.3762/bjoc.21.52

Graphical Abstract
  • diastereomerically pure γ‑branched fluorinated amino acids. This work further underlines the importance of chiral Ni(II) complexes in the synthesis of fluorinated amino acids. Keywords: chiral nickel complexes; fluorinated amino acids; gram-scale amino acid synthesis; stereoselective synthesis; Introduction Non
  • chiral nickel complexes. In recent years, the Soloshonok working group demonstrated the synthesis of non‑natural amino acids using the corresponding chiral Ni(II) complex [7]. In addition to the high enantiomeric purity of the corresponding products, the scale of the reaction, which extends into the
  • the repertoire of published syntheses for this fluorinated derivative of natural leucine. Further attempts to the isolation of the second isomer will be made. Overall, this work further underlines the potential of chiral nickel complexes in synthesizing fluorinated amino acids. The diverse range of
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2025

Photocatalyzed elaboration of antibody-based bioconjugates

  • Marine Le Stum,
  • Eugénie Romero and
  • Gary A. Molander

Beilstein J. Org. Chem. 2025, 21, 616–629, doi:10.3762/bjoc.21.49

Graphical Abstract
  • disulfide bridges. More recently, Lang et al. developed an approach using dual photoredox/nickel-catalyzed antibody functionalization [45], demonstrating the selective modification of Cys residues through photocatalytic methods (Figure 7). A key advantage of this strategy lies in the use of readily
  • nickel catalysis for the functionalization of antibodies in a very elegant and practical manner, the method has been applied to Cys, which necessitates the use of a reductant to access the free form of Cys. Another consequence was the high and non-reproducible DAR. The development of such methods applied
  • procedure developed by Bräse et al. on photoinduced disulfide rebridging method. Schematic procedure developed by Lang et al. on a photoinduced dual nickel photoredox-catalyzed approach. The antibody shown in this figure is from https://www.gettyimages.de/detail/illustration/monoclonal-antibody-igg2a
PDF
Album
Perspective
Published 18 Mar 2025

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • , 5 mol %) [63], indium (as In2O3 nanoparticles, 5 mol %) [64], iron (as FeCl3, 20 mol %) [65], cobalt (as CoBr2, 10 mol %) [66], and nickel (as Ni(py)4Cl2, 15 mol %) [67] can act as metal catalyst for the 3CC reaction. In all these cases, the temperature was lower (usually between 60–80 °C) compared
  • addition) more temperature dependent. However, in the case of nickel catalysis, during AHA coupling, a suitable ligand, such as bipyridine, is needed for the in situ formation of a metal complex that activates the C–H and C–X bond [67]. The solvents used most in the AHA coupling are CH3CN [62][65][66][67
PDF
Album
Review
Published 13 Mar 2025

Organocatalytic kinetic resolution of 1,5-dicarbonyl compounds through a retro-Michael reaction

  • James Guevara-Pulido,
  • Fernando González-Pérez,
  • José M. Andrés and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2025, 21, 473–482, doi:10.3762/bjoc.21.34

Graphical Abstract
  • of 18 with Raney nickel in ethanol at room temperature gave a 3:1 mixture of anti/syn-19. The absolute configuration of anti-19 is (2R,3S), indicating that in the resolution process, the major enantiomer corresponds to the anti-(3S,4R)-5-oxo-3,4,5-triphenylpentanal. Having established that the major
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • [Os(tpy)2]2+/red-light irradiation system well-suited for large-scale manufacturing. In this way, the authors have also tested different osmium complexes in various well-established photocatalyzed reactions such as copper, palladium, cobalt, and nickel metallophotoredox couplings using red light
  • , thereupon highlighting potential for broad applications in photoredox catalysis on an industrial scale. In this context, T. Rovis et al. have studied a C–N cross-coupling Buchwald–Hartwig-like reaction using dual nickel and osmium catalysis under red-light activation, addressing common challenges such as
  • ). The mechanism of the reaction presented by the authors involves two different catalytic cycles as presented in Scheme 3c. After excitation of the osmium complex 13, this latter is reduced via the use of a tertiary amine to give the active species 14 able to oxidize the formed nickel complex 15 in the
PDF
Album
Review
Published 07 Feb 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • , yielding an α-aryloxylation product 37. After their investigation of Cu-catalyzed electrochemical reactions, the same group further developed synergistic Cu/Ni catalysis for the stereodivergent electrooxidation of benzoxazolyl acetate (Figure 10) [59]. In this catalytic system, copper and nickel activate
  • identical racemic carbonyl nucleophiles to generate Cu-enolate 44 and Ni-enolate 43 simultaneously (Figure 10). The Ni-enolate 43 undergoes anodic oxidation through single-electron transfer, releasing nickel-bound α-carbonyl radical 45, whereas the copper complex 44 remains electrochemically inert under
PDF
Album
Review
Published 16 Jan 2025

Nickel-catalyzed cross-coupling of 2-fluorobenzofurans with arylboronic acids via aromatic C–F bond activation

  • Takeshi Fujita,
  • Haruna Yabuki,
  • Ryutaro Morioka,
  • Kohei Fuchibe and
  • Junji Ichikawa

Beilstein J. Org. Chem. 2025, 21, 146–154, doi:10.3762/bjoc.21.8

Graphical Abstract
  • , Ibaraki 305-8571, Japan Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan 10.3762/bjoc.21.8 Abstract 2-Fluorobenzofurans underwent efficient nickel-catalyzed coupling with arylboronic acids through the activation of aromatic C–F bonds. This method allowed us to
  • successfully synthesize a range of 2-arylbenzofurans with various substituents. The reaction, which proceeded under mild conditions, involved β-fluorine elimination from nickelacyclopropanes formed by the interaction of 2-fluorobenzofurans with zero-valent nickel species. This protocol facilitates orthogonal
  • coupling reactions of aromatic C–F and C–Br bonds with arylboronic acids. Keywords: arylboronic acid; benzofuran; C–F bond activation; cross-coupling; nickel; Introduction The metal-catalyzed activation of aromatic carbon–fluorine (C–F) bonds is widely recognized as a challenging task in synthetic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2025
Other Beilstein-Institut Open Science Activities