Search results

Search for "catalyzed" in Full Text gives 1835 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthetic study toward vibralactone

  • Liang Shi,
  • Jiayi Song,
  • Yiqing Li,
  • Jia-Chen Li,
  • Shuqi Li,
  • Li Ren,
  • Zhi-Yun Liu and
  • Hong-Dong Hao

Beilstein J. Org. Chem. 2025, 21, 2376–2382, doi:10.3762/bjoc.21.182

Graphical Abstract
  • featuring a novel Pd-catalyzed β-lactone formation [29]. In addition to these approaches, Nelson and co-workers reported a very concise and impressive total synthesis of vibralactone involving photochemical valence isomerization of substituted pyrone, cyclopropanation, and ring expansion [30]. Zeng, Liu and
  • co-workers investigated the biosynthetic pathway of vibralactone (6). They established that 4-hydroxybenzoate serves as the direct ring precursor of vibralactone and the β-lactone moiety was formed via vibralactone cyclase (VibC)-catalyzed cyclization [31][32][33][34]. This is a fascinating
  • single step from commercially available fructone [38] (Scheme 3). Following an efficient O-trimethylsilylquinine-catalyzed ketene–aldehyde cycloaddition and subsequent alkylation [36], 17 was synthesized. From 17, it was envisioned that the bicyclic skeleton could be efficiently constructed through ketal
PDF
Album
Supp Info
Letter
Published 04 Nov 2025

Comparative analysis of complanadine A total syntheses

  • Reem Al-Ahmad and
  • Mingji Dai

Beilstein J. Org. Chem. 2025, 21, 2334–2344, doi:10.3762/bjoc.21.178

Graphical Abstract
  • total synthesis – 2010 In 2010, Siegel and co-workers reported their total synthesis of complanadine A (Scheme 2). Their synthesis centres on two transition metal-catalyzed alkyne–alkyne–nitrile [2 + 2 + 2] cycloadditions to forge the two pyridine rings encoded by complanadine A [21]. Notably, the C2–C3
  • , followed by acetylation of the resulting propargylic alcohol afforded 17 which was further advanced to 18 via copper-catalyzed selective displacement of the propargyl acetate with benzylamine and hydrolysis of the primary acetate. The primary alcohol of 18 was activated with PPh3/CCl4, triggering an
  • reaction to rapidly establish the tetracyclic skeleton of complanadine A and an iridium-catalyzed site-selective pyridine C–H borylation followed by a Suzuki–Miyaura cross coupling to forge the C2–C3’ linkage. Their synthesis achieves a high degree of synergy between classic transformations and modern
PDF
Album
Review
Published 30 Oct 2025

Recent advances in Norrish–Yang cyclization and dicarbonyl photoredox reactions for natural product synthesis

  • Peng-Xi Luo,
  • Jin-Xuan Yang,
  • Shao-Min Fu and
  • Bo Liu

Beilstein J. Org. Chem. 2025, 21, 2315–2333, doi:10.3762/bjoc.21.177

Graphical Abstract
  • moderate diastereoselectivity; this was followed by Mn(III)-catalyzed metal-hydride hydrogen atom (MHAT) transfer to reduce the endocyclic olefin, forming 41 as a single diastereomer. Subsequent transformations – including a Wittig reaction, demethylation, and oxidation of the resulting phenol to a p
  • Norrish–Yang cyclization, followed by a strain-release Pd-catalyzed C–C cleavage/cross-coupling protocol [9][11]; the strategy was subsequently applied to the total synthesis of lycoplatyrine A (89) in 2021 [38]. Isolated by Low’s group [39], lycoplatyrine A (89) belongs to the lycodine-type Lycopodium
  • 82, followed by dehydrogenation, delivered compound 83 in 49% yield over three steps. Pyridone 83 could be funneled into pyridine 85 through O-triflation followed by Pd-catalyzed reductive detriflation. Ir-catalyzed meta-selective C–H borylation of 85, followed by bromodeborylation of the pyridine
PDF
Album
Review
Published 30 Oct 2025

Insoluble methylene-bridged glycoluril dimers as sequestrants for dyes

  • Suvenika Perera,
  • Peter Y. Zavalij and
  • Lyle Isaacs

Beilstein J. Org. Chem. 2025, 21, 2302–2314, doi:10.3762/bjoc.21.176

Graphical Abstract
  • ]. Next, we performed the oxidative coupling reaction of 1 and W4 in CH2Cl2 catalyzed by anhydrous FeCl3 to give W1 in 35% yield [45]. For the synthesis of W2, we first oxidized triphenylene with CrO3 and 18-crown-6 to give triphenylene-1,4-dione (2) according to Echavarren’s protocol [46]. Triphenylene
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2025

Halogenated butyrolactones from the biomass-derived synthon levoglucosenone

  • Johannes Puschnig,
  • Martyn Jevric and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2025, 21, 2297–2301, doi:10.3762/bjoc.21.175

Graphical Abstract
  • of alkenyl halides 7a and 7b with the green oxidant H2O2 gave trace conversion after 3 days; however, the reaction using m-CPBA catalyzed with p-TSA was complete in 24 hours and afforded the halogenated lactones 8a and 8b in 33% and 34% yield, respectively (Scheme 1). We have recently reported the C3
  • using CF3 donors in copper-catalyzed [34], base- and Lewis acid-mediated reactions [35][36][37]. The reaction of enamine 9a with Togni’s reagent (18) and subsequent hydrolysis gave the substituted derivative 19 in 35% yield (qNMR) (Scheme 4). The yield was improved using the N-methylpiperazine-derived
PDF
Album
Supp Info
Letter
Published 29 Oct 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • research on auxiliary-based chiral Lewis acid catalysis inspired Porter, Sibi and others to transpose the concept to radical chemistry. A large number of enantioselective radical reactions that were reported during 1996–2007 were mainly based on chiral Lewis acid-mediated/catalyzed free radical reactions
  • ], ion pairs [15], N-heterocyclic carbene (NHC) catalysts [16][17][18], or thiols [19][20][21] are not covered here but can also be effective for achieving high levels of enantioselectivity in radical reactions. Lewis acid-catalyzed radical reactions In the context of enantioselective radical reactions
  • ) [40]. The reactions were catalyzed by chiral Lewis acids and involved conjugate addition of a nucleophilic alkyl radical to an α,β-unsaturated substrate containing an oxazolidinone or pyrrolidinone template. The resulting α-radical was trapped with an allylstannane and the addition and trapping
PDF
Album
Perspective
Published 28 Oct 2025

Pathway economy in cyclization of 1,n-enynes

  • Hezhen Han,
  • Wenjie Mao,
  • Bin Lin,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2025, 21, 2260–2282, doi:10.3762/bjoc.21.173

Graphical Abstract
  • transition states. This integrated control framework provides a rational basis for designing reaction conditions to optimize selectivity and efficiency in organic synthesis. In 2014, the Liu group developed an Au(I)-catalyzed cascade cyclization strategy for synthesizing polysubstituted naphthalenes using
  • dual roles as solvent and nucleophile, the gold-catalyzed intermolecular Markovnikov addition of methanol to the gold-activated alkyne proceeded to afford dienol intermediate 4. The intermediate 4 subsequently underwent a regioselective 6-endo-trig cyclization, generating the naphthalene core 7 (Scheme
  • regioselective syntheses of indene, indenone, and naphthalene derivatives from simple aromatic 1,5-enyne substrates. In 2020, a solvent-controlled strategy for Au(I)-catalyzed divergent syntheses of phenanthrene and dihydrophenanthrene derivatives was developed by the Rodríguez group (Scheme 3) [10]. In
PDF
Album
Review
Published 27 Oct 2025

Research towards selective inhibition of the CLK3 kinase

  • Vinay Kumar Singh,
  • Frédéric Justaud,
  • Dabbugoddu Brahmaiah,
  • Nangunoori Sampath Kumar,
  • Blandine Baratte,
  • Thomas Robert,
  • Stéphane Bach,
  • Chada Raji Reddy,
  • Nicolas Levoin and
  • René L. Grée

Beilstein J. Org. Chem. 2025, 21, 2250–2259, doi:10.3762/bjoc.21.172

Graphical Abstract
  • series of molecules: the ones without chlorine in meta position on this group (series a) and the others which kept this chlorine, like in DB18 (series b). These syntheses are reported in Scheme 2. A Suzuki-type Pd-catalyzed coupling of 7a with 4-(methoxycarbonyl)phenylboronic acid dimethyl ester (8) gave
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2025

Pd-catalyzed dehydrogenative arylation of arylhydrazines to access non-symmetric azobenzenes, including tetra-ortho derivatives

  • Loris Geminiani,
  • Kathrin Junge,
  • Matthias Beller and
  • Jean-François Soulé

Beilstein J. Org. Chem. 2025, 21, 2234–2242, doi:10.3762/bjoc.21.170

Graphical Abstract
  • regioselectivity issues, multistep procedures, and limited applicability to tetra-ortho-substituted structures. Herein, we describe a direct, one-pot Pd-catalyzed dehydrogenative C–N coupling between aryl bromides and arylhydrazines to access non-symmetric azobenzenes. The use of bulky phosphine ligands and
  • intricate and inefficient using these standard synthetic protocols. The transition-metal-catalyzed C–N bond formation has emerged as a viable route to access non-symmetric azobenzenes, owing to the broad functional group tolerance of Buchwald–Hartwig amination reactions [34][35][36][37][38][39][40]. Kong
  • hydrazines. Their method involved a three-step process comprising Cu and Pd-catalyzed C–N bond formations followed by a dehydrogenative deprotection step (Figure 1b, top) [42]. This desymmetric approach was further employed by Oestreich and co-workers in 2022, who introduced silicon-masked diazenyl anions in
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2025

Synthesis of triazolo- and tetrazolo-fused 1,4-benzodiazepines via one-pot Ugi–azide and Cu-free click reactions

  • Xiaoming Ma,
  • Zijie Gao,
  • Jiawei Niu,
  • Wentao Shao,
  • Shenghu Yan,
  • Sai Zhang and
  • Wei Zhang

Beilstein J. Org. Chem. 2025, 21, 2202–2210, doi:10.3762/bjoc.21.167

Graphical Abstract
  • advantages over traditional copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions, including operational simplicity and the absence of metal contaminants, which is crucial for pharmaceutical applications. After having identified suitable reaction conditions of the Ugi–azide and click reactions for
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2025

Electrochemical cyclization of alkynes to construct five-membered nitrogen-heterocyclic rings

  • Lifen Peng,
  • Ting Wang,
  • Zhiwen Yuan,
  • Bin Li,
  • Zilong Tang,
  • Xirong Liu,
  • Hui Li,
  • Guofang Jiang,
  • Chunling Zeng,
  • Henry N. C. Wong and
  • Xiao-Shui Peng

Beilstein J. Org. Chem. 2025, 21, 2173–2201, doi:10.3762/bjoc.21.166

Graphical Abstract
  • the indole frame (Scheme 2) [185]. In the presence of KPF6 and NaOAc, subjection of alkyne 3 and aniline 4 to [RuCl2(p-cyneme)]2-catalyzed electrochemical annulation formed the titled indole 5 successfully. After studying the reaction in details, the best reaction conditions were acquired as following
  • , this protocol was an efficient and sustainable approach to synthesize 2,3′-biindolyl atropisomers and could be potentially applied in manufacture of functional materials, bioactive molecules and chiral ligands. Construction of isoindolinones and indolizines An electrochemical and copper-catalyzed
  • along with the formation of Cu(OPiv) which was transformed to Cu(OPiv)2 by oxidation at the anode. Finally, the cyclization of E afforded target isoindolone 24. Notably, this reaction was the first example of electrochemical copper-catalyzed oxidative cyclization of alkyne which was enabled by C–H
PDF
Album
Review
Published 16 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
  • ) [71]. The Bobleter and Feather groups investigated the reaction mechanism of the conversion of these C3 compounds. The acid-catalyzed equilibrium between 1,3-dihydroxy-2-propane and 2,3-dihydroxypropanal involves an ene-triol intermediate which leads to methylglyoxal by a dehydration reaction at
  • ][80][81]. Keto acetals have been observed as by-products, such as in the work reported by Gupta investigating the acid-catalyzed reactions of DHA with various alcohols (Scheme 17) [82]. Colbran and colleagues reported the conversion of DHA to dihydroxyacetone phosphate in four steps in 27% overall
  • catalysts including Ni/CeO2-γAl2O3, spinal NiAl2O4 and Ni/La2O3-αAl2O3, at 230 °C and 3.2 MPa. Using a chiral catalyst composed of [RuCl2(benzene)]2 and SunPhos, an effective asymmetric hydrogenation of α-hydroxy ketones was reported, yielding chiral terminal 1,2-diols in up to 99% ee. This Ru-catalyzed
PDF
Album
Review
Published 15 Oct 2025
Graphical Abstract
  • cyclic prochiral dicarbonyl substrates. In addition, various approaches could be used for the desymmetrization reactions such as enzyme catalytic-, organocatalyst-, and transition-metal-catalyzed reductions [5][6][7]. Advance about the synthesis of several terpenoid and alkaloid natural products (1–5
  • modification of the terminal double bond afforded ketoaldehyde 31. The 2-bromoallylation [15] of 31 with boronic ester 32 stereoselectively constructed the C3–OH group to give homoallylic alcohol 33. Next, a successive manipulation by removal of TBS group, CSA-catalyzed ketalization, and DMP oxidation of the
  • ][26][27][28][29][30]. In 2018, the group of Han accomplished the total synthesis of (+)-cyrneine A (7), (−)-cyrneine B (9), (−)-glaucopine C (10), and (+)-allocyathin B2 (8) by a collective manner [31]. In their synthetic route, an enzyme-catalyzed desymmetric enantioselective reduction of 1,3
PDF
Album
Review
Published 14 Oct 2025

Discovery of cytotoxic indolo[1,2-c]quinazoline derivatives through scaffold-based design

  • Daniil V. Khabarov,
  • Valeria A. Litvinova,
  • Lyubov G. Dezhenkova,
  • Dmitry N. Kaluzhny,
  • Alexander S. Tikhomirov and
  • Andrey E. Shchekotikhin

Beilstein J. Org. Chem. 2025, 21, 2062–2071, doi:10.3762/bjoc.21.161

Graphical Abstract
  • methodologies from traditional acylation/carbamoylation [9] to advanced Pd- or Rh-catalyzed C–H activation [10][11], FeIII–CuII/p-TSA–CuI catalyzed ring expansion/cyclization [12], electrochemical C–H/N–H functionalization [13], RhIII-catalyzed C–H amidation [14], etc. In contrast to chemical studies, a
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2025

Bioinspired total syntheses of natural products: a personal adventure

  • Zhengyi Qin,
  • Yuting Yang,
  • Nuran Yan,
  • Xinyu Liang,
  • Zhiyu Zhang,
  • Yaxuan Duan,
  • Huilin Li and
  • Xuegong She

Beilstein J. Org. Chem. 2025, 21, 2048–2061, doi:10.3762/bjoc.21.160

Graphical Abstract
  • compounds 51a and 51b, which became separable, gratifyingly. Finally, chemoselective reduction of lactam to amine with the more reactive ketone unreacted was successfully achieved. In this transformation, the iridium-catalyzed hydrosilylation of the lactam generated the corresponding O-silyl aminal, which
PDF
Album
Review
Published 09 Oct 2025

Measuring the stereogenic remoteness in non-central chirality: a stereocontrol connectivity index for asymmetric reactions

  • Ivan Keng Wee On,
  • Yu Kun Choo,
  • Sambhav Baid and
  • Ye Zhu

Beilstein J. Org. Chem. 2025, 21, 1995–2006, doi:10.3762/bjoc.21.155

Graphical Abstract
  • stereochemical differentiation should at least be traced to the two pilot atoms that are directly attached, but not within the stereogenic plane – similar to the assignment of stereochemistry for cyclophanes. This way, the asymmetric Pd-catalyzed coupling [19][20] would be assigned as [30] (Scheme 5B and 5C). On
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2025

Aryl iodane-induced cascade arylation–1,2-silyl shift–heterocyclization of propargylsilanes under copper catalysis

  • Rasma Kroņkalne,
  • Rūdolfs Beļaunieks,
  • Armands Sebris,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2025, 21, 1984–1994, doi:10.3762/bjoc.21.154

Graphical Abstract
  • , LV-1006, Riga, Latvia 10.3762/bjoc.21.154 Abstract A novel copper-catalyzed arylation strategy for propargylsilanes utilizing diaryl-λ3-iodanes has been developed, enabling a cascade sequence involving 1,2-silyl migration and heterocyclization. The β-silicon effect facilitates the formation of
  • the reagents of choice for arylation reactions, where an umpolung of reactivity is required [1]. Arylations employing diaryl-λ3-iodanes can be performed under metal-free [2] or metal-catalyzed conditions. For alkyne arylations [Cu] [3] or [Pd] catalysis [4][5][6] is typically employed. Internal
  • species are limited to aryl- [7][8][10] or heteroaryl groups [7][8]. In one example methyl ethers were used [9]. Under [Pd]-catalyzed conditions a syn-type addition is observed [8][11], while [Cu] catalysts promote anti-addition [7][10]. In substrates prone to cationic rearrangements (or hydride shifts
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2025

Photochemical reduction of acylimidazolium salts

  • Michael Jakob,
  • Nick Bechler,
  • Hassan Abdelwahab,
  • Fabian Weber,
  • Janos Wasternack,
  • Leonardo Kleebauer,
  • Jan P. Götze and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2025, 21, 1973–1983, doi:10.3762/bjoc.21.153

Graphical Abstract
  • 22, 14195 Berlin, Germany School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK 10.3762/bjoc.21.153 Abstract Light-mediated methodologies for the reduction of acylazolium species generated during N-heterocyclic carbene (NHC)-catalyzed
  • suitably electrophilic substrate at the carboxylic acid oxidation level provides an acylazolium species B, which typically reacts directly with nucleophiles or may first be transformed into the corresponding enolate derivative. Regardless of the individual pathway, NHC-catalyzed reactions of this type
  • acid derivative substrates [16]. Over the last few years, a wide range of valuable NHC-catalyzed transformations have also been developed that incorporate redox steps. As an enamine species, single-electron oxidation of a Breslow intermediate is comparatively favored with the resulting open shell
PDF
Album
Supp Info
Letter
Published 25 Sep 2025

Asymmetric total synthesis of tricyclic prostaglandin D2 metabolite methyl ester via oxidative radical cyclization

  • Miao Xiao,
  • Liuyang Pu,
  • Qiaoli Shang,
  • Lei Zhu and
  • Jun Huang

Beilstein J. Org. Chem. 2025, 21, 1964–1972, doi:10.3762/bjoc.21.152

Graphical Abstract
  • (±)-4 from pentacyclic starting materials 5 and 6, respectively (Scheme 1B). In 2021, Dai reported the total synthesis of (±)-4 from cyclopentanol 7, in which the bicyclic spiroketal moiety and (Z)-3-butenoate side chain were formed via a palladium-catalyzed carbonylative spirolactonization and Z
  • were developed. A straightforward transformation was designed involving a cross-metathesis of the C13–C14 double bond and a palladium-catalyzed decarboxylative allylation [32] as the key steps. With 14 in hand, we investigated the feasibility of cross-metathesis of the C13–C14 double bond. Initially
  • -metathesis reaction smoothly in the presence of the Hoveyda–Grubbs second-generation catalyst to afford the enone 13 in 63% yield with the desired trans-configuration. Enone 13 was then subjected to the Pd/C-catalyzed hydrogenation to give the thermodynamically favored bicyclic hemiketal 21 in 92% yield as
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2025

Enantioselective desymmetrization strategy of prochiral 1,3-diols in natural product synthesis

  • Lihua Wei,
  • Rui Yang,
  • Zhifeng Shi and
  • Zhiqiang Ma

Beilstein J. Org. Chem. 2025, 21, 1932–1963, doi:10.3762/bjoc.21.151

Graphical Abstract
  • biologically active molecules. Based on the reaction types, three strategies are discussed: enzymatic acylation, transition-metal-catalyzed acylation, and local desymmetrization. Keywords: asymmetric synthesis; desymmetrization; 1,3-diols; natural product; total synthesis; Introduction Natural products
  • -catalyzed acylation, and local desymmetrization. In this review, we cover total syntheses that utilize enantioselective desymmetrization of prochiral 1,3-diols. Review Desymmetrization via enzymatic acylation Enzymatic reactions represent one of the most useful tools in total synthesis. Through combination
  • general mechanism of a reaction catalyzed by lipases is illustrated in Scheme 1. Additionally, the diverse three-dimensional structures of lipases confer enantioselectivity in lipase-catalyzed esterification [24][25]. Moreover, their commercial availability makes lipases an attractive option for preparing
PDF
Album
Review
Published 18 Sep 2025

Synthesis of N-doped chiral macrocycles by regioselective palladium-catalyzed arylation

  • Shuhai Qiu and
  • Junzhi Liu

Beilstein J. Org. Chem. 2025, 21, 1917–1923, doi:10.3762/bjoc.21.149

Graphical Abstract
  • Road, Hong Kong, China Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China 10.3762/bjoc.21.149 Abstract A series of nitrogen (N)-doped macrocycles was successfully synthesized through palladium-catalyzed arylation. X-ray crystallographic characterization
  • palladium (Pd)-catalyzed arylation of aza[14]metacyclophane derivatives. By modulating the substitutions on the N atoms, two isomeric macrocycles, a C1-symmetric one as the minor fraction (MC1) and a C2v-symmetric one as the major product (MC2), were successfully obtained when 4-tert-butylphenyl groups were
  • through circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy. Results and Discussion The syntheses of N-doped macrocycles MC1–3 are shown in Scheme 1. Diamines 1a and 1b were synthesized by double Pd-catalyzed C–N coupling reaction of 4,6-dichlorobenzene-1,3-diamine with phenyl
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2025

Chiral phosphoric acid-catalyzed asymmetric synthesis of helically chiral, planarly chiral and inherently chiral molecules

  • Wei Liu and
  • Xiaoyu Yang

Beilstein J. Org. Chem. 2025, 21, 1864–1889, doi:10.3762/bjoc.21.145

Graphical Abstract
  • , the application of CPA catalysis in the asymmetric synthesis of other forms of molecular chirality has received less attention. While List and co-workers reported the first CPA-catalyzed asymmetric synthesis of helically chiral azahelicenes through the Fischer indole synthesis back in 2014 [12], the
  • second CPA-catalyzed asymmetric synthesis of helicenes was not achieved until 2023 [13][14]. Similarly, the CPA-catalyzed asymmetric synthesis of planarly chiral [15] and inherently chiral [16] molecules was not disclosed until 2022. In this Review, we have comprehensively summarized the recent
  • advancements in the CPA-catalyzed asymmetric synthesis of various distinct chiral elements, encompassing helically, planarly and inherently chiral molecules. The Review is structured based on the various types of chiral elements, presenting a representative substrate scope for each method, showcasing the
PDF
Album
Review
Published 10 Sep 2025

Systematic pore lipophilization to enhance the efficiency of an amine-based MOF catalyst in the solvent-free Knoevenagel reaction

  • Pricilla Matseketsa,
  • Margret Kumbirayi Ruwimbo Pagare and
  • Tendai Gadzikwa

Beilstein J. Org. Chem. 2025, 21, 1854–1863, doi:10.3762/bjoc.21.144

Graphical Abstract
  • environment, suppressing the hydrolysis reaction that would return the starting materials [36]. Thus, in this work, we investigate the influence of pore lipophilicity on the amine-catalyzed Knoevenagel condensation. The Knoevenagel condensation reaction is a vital organic reaction involving the condensation
  • malononitrile to form benzylidenemalononitrile (BMN). In a typical primary amine-catalyzed Knoevenagel condensation, the amine would undergo imine condensation with benzaldehyde. The imine would then deprotonate malononitrile, and the resulting carbanion would react with the imine, releasing the final product
  • ×20 magnification. Right: ratios of BMN:HPMM products for each catalyst. Probable mechanisms for the Knoevenegel condensation reaction between benzaldehyde and malononitrile catalyzed by a MOF-immobilized amine to form benzylidenemalononitrile (BMN). A) Mechanism in which the amine catalyst first
PDF
Album
Supp Info
Letter
Published 09 Sep 2025

Fe-catalyzed efficient synthesis of 2,4- and 4-substituted quinolines via C(sp2)–C(sp2) bond scission of styrenes

  • Prafull A. Jagtap,
  • Manish M. Petkar,
  • Vaishnavi R. Sawant and
  • Bhalchandra M. Bhanage

Beilstein J. Org. Chem. 2025, 21, 1799–1807, doi:10.3762/bjoc.21.142

Graphical Abstract
  • -disubstituted and 4-substituted quinoline molecules. The developed strategy involves an earth-abundant Fe-catalyzed C(sp2)–C(sp2) bond cleavage of styrene, followed by the hydroamination of the cleaved synthons with arylamines and subsequent C–H annulation to yield two valuable quinoline derivatives. Key
  • strategies have been explored in recent decades for the synthesis of structurally diverse quinolines. Among them, transition-metal-catalyzed multicomponent reactions (MCRs) have emerged as particularly effective for constructing complex quinoline-based heterocycles [26][27][28]. Catalytic pathways such as
  • [53]. In this work, the authors used a stoichiometric amount of Zn(OTf)3 as a Lewis acid catalyst and air as the oxidant for the reaction. Jana and colleagues demonstrated an atom-efficient pseudo-three-component C–H annulation reaction catalyzed by Yb and Cu, which involved nitrosoarenes and styrene
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2025

Synthesis of chiral cyclohexane-linked bisimidazolines

  • Changmeng Xi,
  • Qingshan Sun and
  • Jiaxi Xu

Beilstein J. Org. Chem. 2025, 21, 1786–1790, doi:10.3762/bjoc.21.140

Graphical Abstract
  • bisimidazolines are efficient chiral ligands in metal-catalyzed asymmetric organic transformations. Chiral cyclohexane-linked bisimidazolines were prepared from optically active cyclohexane-1,2-dicarboxylic acid and 1,2-diphenylethane-1,2-diamines via the monosulfonylation of 1,2-diphenylethane-1,2-diamines
  • bisoxazolines [1][2][3][4][5][6][7][8][9] and bisimidazolines [10][11][12][13][14][15] are efficient chiral ligands and have been widely applied in various metal-catalyzed asymmetric organic transformations. Various chiral bisoxazoline ligands have been prepared from diacids and enantiopure vicinal amino
  • alcohols and utilized in different metal-catalyzed asymmetric organic reactions [1][2][3][4][5][6][7][8][9]. In comparison with bisoxazoline ligands, relatively less attention has been paid to bisimidazoline ligands [10][11][12][13][14][15]. Some well investigated bisimidazoline ligands are pyridine-linked
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025
Other Beilstein-Institut Open Science Activities