Search results

Search for "transition-metal-catalyzed" in Full Text gives 264 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • electrochemistry and copper catalysis for various organic transformations. Keywords: copper; electrochemistry; radical chemistry; single-electron transfer; sustainable catalysis; Introduction Transition-metal-catalyzed cross-coupling has emerged as an effective method for forming carbon–carbon (C–C) and carbon
  • efficient and economical approach for molecular synthesis [40]. This strategy has been widely applied in synthetic chemistry, the pharmaceutical industry, and materials science. Over the past few decades, transition-metal-catalyzed C–H activation reactions have been widely developed. Late-stage C–H
  • quinine as a chiral ligand under standard conditions, the chiral product was obtained with a high yield and 79% ee. Enantioselective C(sp3)–H functionalization is an attractive strategy for synthesizing chiral molecules. Significant progress has been achieved in transition-metal-catalyzed asymmetric C–H
PDF
Album
Review
Published 16 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • purities, solid yields and very good diastereomeric ratios. The hydroxy group present in products 156 and 158 could be transformed to provide axially chiral phosphines that could be utilized as chiral ligands in transition-metal-catalyzed reactions. Testing both substrates 156 and 158 for conformational
PDF
Album
Review
Published 09 Jan 2025

Intramolecular C–H arylation of pyridine derivatives with a palladium catalyst for the synthesis of multiply fused heteroaromatic compounds

  • Yuki Nakanishi,
  • Shoichi Sugita,
  • Kentaro Okano and
  • Atsunori Mori

Beilstein J. Org. Chem. 2024, 20, 3256–3262, doi:10.3762/bjoc.20.269

Graphical Abstract
  • ; phosphine ligand; pyridine amides; Introduction Transition-metal-catalyzed synthetic reactions have recently attracted much attention in synthetic organic chemistry [1][2]. C–H Arylation reactions catalyzed by a transition metal are of particular interest because these reactions involve rather superior
PDF
Album
Supp Info
Full Research Paper
Published 13 Dec 2024
Graphical Abstract
  • substitution/addition reactions became the standard for end-capping reactions, although a transition metalcatalyzed cross-coupling reaction has also been used to synthesize CD-based rotaxane. Typically, water-soluble components are prepared, after which the Suzuki coupling reaction in water is used to
  • into the polymer system, further modification and structural analyses were performed [48][74]. The axle end was easily modified by bromination of the benzene ring and successive transition metalcatalyzed cross-coupling reaction, such as Suzuki or Sonogashira coupling (Figure 10A). Furthermore, the
PDF
Album
Review
Published 19 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • with radical B to form product 73. The mechanism of the transition metal-catalyzed oxidation of amines with TBHP was studied in detail in the work of Doyle and Ratnikov [71]. The scope of the amines 74 that can be functionalized by the tert-butylperoxy fragment was significantly broadened by using a
PDF
Album
Review
Published 18 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • -arylations utilizing diaryliodonium salts, marked by significant contributions, notably from research teams led by Sanford [53] and Gaunt [54]. The synthesis of carbon–carbon bonds through metal-free approaches serves as a valuable complement to transition-metal-catalyzed couplings. This is particularly
  • reductive elimination to produce the desired sulfilimine 99 (Scheme 40) [92]. Synthesizing S-aryl xanthates through transition-metal-catalyzed or SNAr reactions presents challenges due to potential additional transformations occurring under the reaction conditions. However, employing diaryliodonium salts
PDF
Album
Review
Published 13 Nov 2024

C–H Trifluoromethylthiolation of aldehyde hydrazones

  • Victor Levet,
  • Balu Ramesh,
  • Congyang Wang and
  • Tatiana Besset

Beilstein J. Org. Chem. 2024, 20, 2883–2890, doi:10.3762/bjoc.20.242

Graphical Abstract
  • various transformations [54][55][56][57][58][59][60][61][62][63][64]. In consequence, a large number of transition-metal-catalyzed or radical-mediated processes for C–H functionalization of aldehyde hydrazones has flourished over the years. An ideal scenario for a direct and sustainable synthetic route
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • expand the scope of transition metal-catalyzed substitution reactions. Since its discovery in 2022, copper-catalyzed yne-allylic substitution has undergone rapid development and significant progress has been made using the key copper vinyl allenylidene intermediates. This review summarizes the
  • propargylic substitution and allylic substitution, but represents a new type of reaction mode, and greatly expands the scope of transition metal-catalyzed substitution reactions. Currently, yne-allylic substitutions affording 1,3- or 1,4-enynes, remote substitutions through dearomatization-rearomatization
PDF
Album
Review
Published 31 Oct 2024

Transition-metal-free synthesis of arylboronates via thermal generation of aryl radicals from triarylbismuthines in air

  • Yuki Yamamoto,
  • Yuki Konakazawa,
  • Kohsuke Fujiwara and
  • Akiya Ogawa

Beilstein J. Org. Chem. 2024, 20, 2577–2584, doi:10.3762/bjoc.20.216

Graphical Abstract
  • variety of transition-metal-catalyzed reactions and photoredox reactions using arylboronates as aryl sources have been energetically investigated for the construction of carbon–carbon or carbon–heteroatom bonds [12][13][14][15]. The preparation of arylboronates often requires pre-functionalized substrates
  • with halogen or triflate groups. Recently, transition-metal-catalyzed direct borylation of arenes via C–H bond activation has been reported, although the design of the substrate and ligands is somewhat complicated [16][17][18][19][20][21][22]. Since the complete removal of catalyst-derived metal
  • diborons can capture the in situ-generated carbon-centered radicals [28][29][30][31][32][33][34][35][36]. Among the aryl sources in organic synthesis, triarylbismuthines are shelf-stable and easy-to-handle reagents with appropriate reactivities in transition-metal-catalyzed reactions and radical reactions
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • [3]. Transition-metal-catalyzed LSF strategies have been well-established over the past decades. More recently, with the vigorous development of photochemistry and electrochemistry, numerous innovative reports on LSF using photo-, electro-, and photoelectrochemistry have emerged. These areas have
PDF
Album
Review
Published 09 Oct 2024

gem-Difluorination of carbon–carbon triple bonds using Brønsted acid/Bu4NBF4 or electrogenerated acid

  • Mizuki Yamaguchi,
  • Hiroki Shimao,
  • Kengo Hamasaki,
  • Keiji Nishiwaki,
  • Shigenori Kashimura and
  • Kouichi Matsumoto

Beilstein J. Org. Chem. 2024, 20, 2261–2269, doi:10.3762/bjoc.20.194

Graphical Abstract
  • fluorobenziodoxole, are also utilized as F+ equivalents to introduce fluorine atoms into organic molecules. In addition, various trifluoromethylation reagents have been developed so far [5][6][7][8][9][10][11][12][13][14][15][16][17][18]. Transition-metal-catalyzed fluorination and trifluoromethylation methods have
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • ), but is also widely used in transition-metal-catalyzed carbonylation reactions [1][2]. However, carbon monoxide is a flammable gas with a wide explosive range, although colorless and odorless, and requires special care in handling due to its high toxicity. In addition, when carbon monoxide is used in a
PDF
Album
Perspective
Published 26 Aug 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • versatile building blocks in organic syntheses. To achieve this transformation with high efficiency and predictable regioselectivity, numerous efforts have been made to develop transition-metal-catalyzed reactions based on a C–H activation strategy [1][2][3][4] or the reductive coupling of aryl halides with
PDF
Album
Supp Info
Letter
Published 10 Jun 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • functionalization of indoles to 3-substituted indoles Functionalization through direct C–H alkoxycarbonylation The transition-metal-catalyzed carbonylation of aryl halides, triflates, and tosylates with carbon monoxide and an alcohol was first pioneered by Heck and co-workers in 1974 [64][65]. Since then, this
PDF
Album
Review
Published 30 Apr 2024

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • motif in bioactive compounds and the synthetic utility of its olefinic C=C bond. The most extensively explored approach to this transformation is the transition metal-catalyzed C–N coupling between azoles and vinylating agents, including vinyl halides [4], boronates [5], sulfonium salts [6][7][8], and
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • . Multicomponent reactions (MCRs) by virtue of high efficiency for the construction of complex chemicals, have shown the superiority in high step and atom economy in organic synthesis [25][26][27]. Over the past two decades, our group and others have developed a transition-metal-catalyzed MCR strategy involving
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • (insomnia). Some recent synthetic approaches to imidazo[1,2-a]pyridine scaffolds include synthetic pathways of transition metal-catalyzed reactions [14], cyclization [15], condensation [16], heteroannular [17], and photocatalytic reactions [18]. These approaches usually involve non-trivial reaction
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • electronically excited substrate (*S) through an energy transfer (EnT) mechanism (path c). In addition to these mechanistic blueprints, the formation of charge-transfer complexes involving NHPI esters, as well as examples of photoinduced transition metal-catalyzed activation will be discussed. Depending on the
  • , the aminodecarboxylation reaction proved unsuccessful when employing alternative photocatalysts such as Ru(bpy)3Cl2 or eosin Y, underscoring the distinctive ability of q-OAc to activate TCNHPI esters via EDA complex formation. Photoinduced transition metal-catalyzed mechanisms The in situ formation of
PDF
Album
Perspective
Published 21 Feb 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • regioselectivity. Significant advancements in the synthesis of arylthianthrenium salts have prompted a growing interest in their utilization as versatile precursors for the conversion of C–H bonds in arenes into C–C/X bonds through transition-metal-catalyzed cross-coupling processes [12][13][14][15][16][17][18][19
  • generation of alkyl radicals [39]. After that, a series of methods for the modification of alkylthianthrenium salts have been developed, including the transition-metal-catalyzed cross-coupling with terminal alkynes [40], sulfonylation with DABCO·(SO2)2 [41][42][43], or alkylation of active alkenes [44][45
  • -metal-catalyzed cross-coupling [32][33] and aminofunctionalization [34] of alkenes were achieved, benefiting from the unique reactivity of organothianthrenium species that are generated through the reaction of alkenes and thianthrene sulfoxide (TT=O) or thianthrene (TT) (Scheme 1b). Alcohols are widely
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • advances in the field. A Review article by Pounder, Tam, and co-authors summarizes new transition-metal-catalyzed domino reactions of strained bicyclic alkenes, including both homo- and heterobicyclic alkenes highly useful for the construction of biologically significant compounds with multiple
PDF
Album
Editorial
Published 08 Feb 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • their biological activity and potential applications, continuous efforts have been dedicated to the synthesis of DHPI derivatives. Various synthetic strategies have been explored (Scheme 1), including transition-metal-catalyzed cross-coupling reactions [8][9][10], annulation reaction of carbenoids [11
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • achieved via a radical mechanism (Scheme 17). In comparison to the Pt-catalyzed system, the radical-induced hydrosilylation has a lower cost, better tolerance to coordinating functionalities, and yields products without metal residues, but its efficiency is inferior to transition-metal catalyzed methods
PDF
Album
Review
Published 18 Oct 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • important gap. Research progress of coupling reactions and active compounds containing α-C(sp3)-functionalized ethers. Transition-metal-catalyzed CDC pathways. CDC of active methylene compounds in the α-C(sp3) position of ethers. InCl3/Cu(OTf)2/NHPI co-catalyzed CDC reaction. CDC of cyclic benzyl ethers
PDF
Album
Review
Published 06 Sep 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • -effect; Introduction Iodonium ylides are a subset of hypervalent iodine (HVI) reagents that were first reported in 1957 by Neiland [1]. These have since been investigated under a variety of thermal, photochemical, radical and transition metal-catalyzed conditions [2], and they have been successfully
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • carboxylic acids with amines that typically generate stochiometric amounts of harmful byproducts released [80][81], while simultaneously operating under milder reaction conditions than those applied in transition metal-catalyzed carbonylative amidation protocols [82][83]. Following the same distinct, yet
PDF
Album
Review
Published 28 Jul 2023
Other Beilstein-Institut Open Science Activities