Search results

Search for "benzylic" in Full Text gives 339 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • 18 containing an exocyclic alkene was subjected to the reaction conditions, a mixture of benzylic chlorides (20) was formed in low yields, and trace amounts of the allylic chloride 19 was also isolated, the materials differentiated on the basis of the coupling of the acetal H5 with the respective
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • benzylic carbocation [42], in our case no product was observed. Since β-substituted styrenes can be involved in the transformation it is possible that the azide radicals can react either with the vinylic product formed in the reaction or with the starting vinyl-BF3K. Simple aryl-BF3K 12 only afforded 14
  • to styrene would generate intermediate I-1. Oxidation of the benzylic radical (E1/2ox = +0.37 V vs SCE for the corresponding radical without the azide) [61] by the previously formed Ru(bpy)3+ (E1/2 [RuIII/RuII] = +1.29 V vs SCE) [53] regenerates the ground state photocatalyst and forms carbocation I
  • -2. Finally, nucleophilic addition of the alkynyl-trifluoroborate onto the benzylic carbocation would afford homopropargylic azide 4 [45]. Conclusion In summary, an azido-alkynylation of styrenes to access homopropargylic azides was developed. The reaction was initially investigated using EBX
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • nucleophilic substitution of benzylic bromides with sodium azide and a subsequent copper(I)-catalyzed double click reaction in one pot [17]. In summary, these contributions by renowned experts demonstrate the broad diversity of impressive catalytic domino, tandem, and one-pot processes towards many valuable
PDF
Album
Editorial
Published 08 Feb 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • dianion 7 forms (resonance form 7b will prevail in this case, Figure 1), it will be inactive to attack by nucleophiles. The behavior of acenaphthene 5 could be clarified further using its naphthalene analog 3, which lacks benzylic CH2 protons, but there is no information in the literature about its
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Tandem Hock and Friedel–Crafts reactions allowing an expedient synthesis of a cyclolignan-type scaffold

  • Viktoria A. Ikonnikova,
  • Cristina Cheibas,
  • Oscar Gayraud,
  • Alexandra E. Bosnidou,
  • Nicolas Casaretto,
  • Gilles Frison and
  • Bastien Nay

Beilstein J. Org. Chem. 2024, 20, 162–169, doi:10.3762/bjoc.20.15

Graphical Abstract
  • reaction is possible upon elimination of the resulting benzylic alcohol on D, allowing another arylation forming E [18]. This complex sequence of transformations is herein applied to the synthesis of 1-aryltetralines, analogues of cyclolignan natural products having important medicinal applications [19][20
  • reactions. Highly nucleophilic arenes like 1,3,5-trimethoxybenzene react easily under mild conditions and result in a stabilized benzylic cation in acidic conditions, allowing a second intramolecular Friedel–Crafts reaction involving the aryl substituent of the substrate. These reactions are favored by π
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2024

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • as a sulfenylating source gave the target product in 93% yield. Knochel and co-workers found that copper acetate can catalyze the cross-coupling reaction between (hetero)aryl, alkyl and benzylic zinc halides 36 with N-thiophthalimides 14 (Scheme 18) [55]. Various metal catalysts, including CrCl2
PDF
Album
Review
Published 27 Sep 2023

One-pot nucleophilic substitution–double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

  • Hans-Ulrich Reissig and
  • Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399–1407, doi:10.3762/bjoc.19.101

Graphical Abstract
  • Hans-Ulrich Reissig Fei Yu Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany Asymchem Boston Corporation, 10 Gill Street, Woburn, Massachusetts, 01801, USA 10.3762/bjoc.19.101 Abstract The nucleophilic substitution of benzylic bromides with sodium
  • aminopyrans [54], should be converted into divalent compounds via coupling of the terminal propynyl group with benzylic biazides. Since biazides are potentially explosive [22] it was very desirable to avoid their isolation and to generate these reactive species in situ from the corresponding benzylic halides
  • possible, that the N-benzyl group attached to the 1,2,3-triazole moiety is partially removed under these conditions and/or that even the C–O bond connecting the 1,2,3-triazole part with the aminopyran part is reductively cleaved since this bond also has benzylic character. In earlier investigations with
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • benzylic ethers occurs at room temperature in the presence of Cu(OTf)2/InCl3 as catalysts and DDQ as oxidant (Scheme 3) [51]. By this route, a series of 2-alkoxymalonate diester derivatives was synthesized through direct CDC reaction. The mechanism study showed that the first step of the catalytic cycle
  • involves a hydride abstraction from the benzylic site of isochroman to generate a cationic species A, whereas the malonate is activated by the In/Cu catalyst (B). Subsequently, the coupling of the two intermediates yields the desired product and regenerates the catalyst. Alternatively, In(III) may be
  • the substrate achieved the activation of the C(sp2)–H bond. Other non-noble metal-catalyzed reactions In 2013, Liu et al. reported that MnO2 could catalyze the CDC of the benzylic C(sp3)–H bond in benzyl ethers with α-carbonyl C(sp3)–H bonds in the presence of air at room temperature (Scheme 33) [98
PDF
Album
Review
Published 06 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • potential of RLT reactions to be rapid and efficient. In both cases, benzylic carboxylic acids were most amenable as substrates, with alkyl carboxylic acids such as adamantane and dicyclohexylmethane providing fluorinated aliphatic products in low to moderate yields. Asymmetric RLT catalysis has also been
  • of recent interest, with exciting preliminary decarboxylative azidation results obtained under thermal conditions by Hongli Bao and co-workers [44]. An asymmetric iron (NON) pincer catalyst IV was employed to decarboxylate benzylic peroxyesters and form enantiomerically enriched benzylic azides. An
  • ) azide complex, reducing the iron catalyst back to the starting Fe(II) state. Organic azides can be formed in moderate to high enantioselectivity using this approach; however, the scope is largely limited to benzylic products, a result in line with Groves’ finding that benzylic acid substrates perform
PDF
Album
Perspective
Published 15 Aug 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • in only 20 minutes. Scope Based on the obtained knowledge to optimize the reaction conditions, a variety of sulfides were tested. As shown in Scheme 3, the anticipated products were obtained in good to excellent yields with a few exceptions (2v–z). In general, heteroatoms at the benzylic position (2a
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • -Tribromopyrimidine (6a), whose core pyrimidine structure can be found in many biologically active compounds, could be sequentially substituted with 1,3,5-trimethoxybenzene and N-methylpyrrole to give 8a. The protocol also enabled the selective reductive dehalogenation at the benzylic position of 9a with green light
PDF
Album
Review
Published 28 Jul 2023

Linker, loading, and reaction scale influence automated glycan assembly

  • Marlene C. S. Dal Colle,
  • Manuel G. Ricardo,
  • Nives Hribernik,
  • José Danglad-Flores,
  • Peter H. Seeberger and
  • Martina Delbianco

Beilstein J. Org. Chem. 2023, 19, 1015–1020, doi:10.3762/bjoc.19.77

Graphical Abstract
  • ] and L2 [3] are based on the o-nitrobenzyl scaffold [23][24] and expose a hydroxy group that serves as glycosyl acceptor in the first AGA cycle (Figure 1B). While L1 displays a flexible aliphatic chain terminating with a primary alcohol, L2 carries a secondary benzylic alcohol. Upon irradiation with UV
PDF
Album
Supp Info
Letter
Published 06 Jul 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • selectively targeted by photoredox catalysis to enable unprecedented modification of the amino acid. In this context, it is worth mentioning that the single-electron oxidation of the indole moiety in tryptophan provides the radical cation, which enables selective C-radical generation at the weaker benzylic
  • intramolecular decarboxylative cyclization with the formation of the 3,4-fused indole carbocycle rings (Figure 1b,c). In detail, the photocatalytic strategy for accessing the two C(sp3) radicals of DMAT derivatives envision the formation of a relatively stabilized allylic-benzylic carbon-centered radical by
  • Hz, 1H)], strongly indicating that this product is not the desired structure 6’ but the eight-membered cycloalkene structure 6, shown in Scheme 2. Based on these results and previous reports on the benzylic and allylic C–H bond functionalization enabled by metallaphotoredox catalysis [86], we propose
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • cationic Zr complexes provided good transformations, probably due to good accessibility of the coordination site and an increased Lewis acidity of the metal center. The authors also demonstrated that this catalytic system also catalyzes the alkylation of benzylic C–H bonds (C(sp3)–H) of various
  • dialkylpyridines with alkenes. It is to be noted that the ligands’ backbones were found to be crucial for the regioselectivity of the addition to benzylic C(sp3)–H bonds, as N-arylamine-bridged bis(phenolato) Zr complexes provided branched products whereas N-alkylamine-bridged bis(phenolato) Zr complexes provided
PDF
Album
Review
Published 12 Jun 2023

Sulfate radical anion-induced benzylic oxidation of N-(arylsulfonyl)benzylamines to N-arylsulfonylimines

  • Joydev K. Laha,
  • Pankaj Gupta and
  • Amitava Hazra

Beilstein J. Org. Chem. 2023, 19, 771–777, doi:10.3762/bjoc.19.57

Graphical Abstract
  • single electron transfer (SET), is proposed to be involved in the plausible reaction mechanism. Keywords: arylsulfonylimine; benzylic oxidation; benzyl sulfonamide; K2S2O8; sulfate radical anion; Introduction Among various imine compounds [1], N-arylsulfonylimines are perhaps the most prominent due to
  • -dehydrative reaction of aldehydes with isocyanate analogs ([3] and references therein) (Scheme 1b) and an oxidative reaction of primary benzylic alcohols with sulfonamides or chloramine-T ([3] and references therein), and although they are elegant, they use substrates that are not readily accessible or toxic
  • were used as the substrates in this reaction, N-arylimines were not isolated. Rather, an amide, in some cases, was isolated via oxidation of the benzylic methylene to a carbonyl group [14]. In the quest of a new method for the synthesis of N-arylsulfonylimines, we questioned ourselves whether N
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • , prepared by benzylic bromination of the methyl substituents of 132 and 133 (Scheme 29). 5 1,4-Michael addition Narita et al. [72] reported their total synthesis of bauhinoxepine J (139), a quinone dihydrobenzoxepine derivative, by means of a base-promoted intramolecular etherification (Scheme 30). 6
PDF
Album
Review
Published 22 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • bonds did not have a significant impact on the outcome of the reaction. It should be noted that this methodology afforded the products with a high regioselectivity, and no incorporation of the SCF3 moiety on the benzylic or at the C5 position of the quinoline part of the directing group was observed
PDF
Album
Review
Published 17 Apr 2023

Synthesis and characterisation of new antimalarial fluorinated triazolopyrazine compounds

  • Kah Yean Lum,
  • Jonathan M. White,
  • Daniel J. G. Johnson,
  • Vicky M. Avery and
  • Rohan A. Davis

Beilstein J. Org. Chem. 2023, 19, 107–114, doi:10.3762/bjoc.19.11

Graphical Abstract
  • of an ether linker on the pyrazine ring, with a two methylene unit chain length between the heterocyclic core and benzylic substituent, improved the potency of these compounds [16]. Hence, scaffolds 1–3 were then converted into a series of ether-linked triazolopyrazines with phenethyl alcohol or
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2023

Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation

  • Julian Spils,
  • Thomas Wirth and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 27–32, doi:10.3762/bjoc.19.2

Graphical Abstract
  • resulted in the formation of insoluble intermediary iodoarenes. Derivatizing the benzylic position was done by employing secondary benzyl alcohols. These are well soluble and lead to an about 10-times shortened Friedel–Crafts step at 0 °C for the conversion of 3g. Longer times only resulted in the
PDF
Album
Supp Info
Letter
Published 03 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • further oxidized, and thus producing the respective benzylic cation. Intramolecular cyclization in the cationic position under participation of the methyl ester function provided the core for (+)-grandilodine C (191) and (+)-lapidilectine B (192), while allylation of the benzylic position allowed
  • quenchers (e.g., PhSSPh) to the reaction mixture. When monosubstitution of the aryl group is present, the formed radical cation, the product of the photooxidation of the cinnamyl ether, readily cyclizes to cyclobutene radical cation 217. The latter cleaves the benzylic C–C bond to produce the 1,4-radical
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • HFIP. The regioselective amination of benzylic positions in alkylarenes [82] and ethers [83] directed by steric effects was achieved by the development of sterically hindered “bowl-shaped” imide-N-oxyl radical precursors (Scheme 7). The presented example with a sterically hindered N-hydroxyimide
  • -hydroxybenzimidazole core has several modification sites that allow one to control the properties of the catalyst over a wide range. The authors demonstrated the high efficiency of N-hydroxybenzimidazole catalysts in the benzylic CH-amination with diethyl azodicarboxylate and the CH-fluorination of aldehydes with
  • photoredox-catalyst or electrochemically on an anode. An example of the photochemical aerobic benzylic CH-oxidation employing a heterogeneous photoredox catalyst, nanosized TiO2, was demonstrated by our group [85] (Scheme 9). Mixing of NHPI and TiO2 leads to the emergence of visible light absorbance
PDF
Album
Perspective
Published 09 Dec 2022

Using UHPLC–MS profiling for the discovery of new sponge-derived metabolites and anthelmintic screening of the NatureBank bromotyrosine library

  • Sasha Hayes,
  • Aya C. Taki,
  • Kah Yean Lum,
  • Joseph J. Byrne,
  • Merrick G. Ekins,
  • Robin B. Gasser and
  • Rohan A. Davis

Beilstein J. Org. Chem. 2022, 18, 1544–1552, doi:10.3762/bjoc.18.164

Graphical Abstract
  • hydroxy group were positioned at C-3 and C-4 of the aromatic ring, respectively, based on NMR chemical shift data comparison with related marine natural products [19]. The E configuration for the oxime in 1 was assigned by the diagnostic carbon chemical shifts of the benzylic methylene (C-7, δC 27.8) [21
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2022

Modular synthesis of 2-furyl carbinols from 3-benzyldimethylsilylfurfural platforms relying on oxygen-assisted C–Si bond functionalization

  • Sebastien Curpanen,
  • Per Reichert,
  • Gabriele Lupidi,
  • Giovanni Poli,
  • Julie Oble and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2022, 18, 1256–1263, doi:10.3762/bjoc.18.131

Graphical Abstract
  • of benzaldehyde led to the formation of adduct 14 (in 75% yield), which arose from the addition of a benzyl carbanion 17 to benzaldehyde. The generation of such a nucleophile strongly suggests the formation of pentavalent silicon intermediate 15 [27], which then produced a (stabilized) benzylic
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2022

First series of N-alkylamino peptoid homooligomers: solution phase synthesis and conformational investigation

  • Maxime Pypec,
  • Laurent Jouffret,
  • Claude Taillefumier and
  • Olivier Roy

Beilstein J. Org. Chem. 2022, 18, 845–854, doi:10.3762/bjoc.18.85

Graphical Abstract
  • through steric and electronic interactions involving peptoid amides and nearby side chains [17][18]. For example, N-substituted monomers bearing benzylic-type Nα-chiral groups including the phenylethyl [19][20][21], naphthylethyl [17][22][23][24], and triazolium groups [25][26][27], alkyl ammonium [28
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2022
Other Beilstein-Institut Open Science Activities