Search results

Search for "polyketide" in Full Text gives 82 result(s) in Beilstein Journal of Organic Chemistry.

Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites

  • Antonio Dávila-Céspedes,
  • Peter Hufendiek,
  • Max Crüsemann,
  • Till F. Schäberle and
  • Gabriele M. König

Beilstein J. Org. Chem. 2016, 12, 969–984, doi:10.3762/bjoc.12.96

Graphical Abstract
  • -date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary
  • examples are the phenylnannolones A–C (11–13, Figure 7), molecules of polyketide nature with a phenylalanine-derived starter unit [45]. These compounds are synthesized by N. exedens strain 150, later reassigned to N. pusilla, isolated from the intertidal region of a beach in Crete [45]. Cultivation of the
  • . Further investigation led to the isolation and structure elucidation of the bioactive polyketide haliangicin (24, Figure 10), which was the first myxobacterial metabolite of true marine origin. It was found that this molecule comprised a β-methoxyacrylate subunit including a conjugated tetraene moiety [52
PDF
Album
Supp Info
Review
Published 13 May 2016

Antibiotics from predatory bacteria

  • Juliane Korp,
  • María S. Vela Gurovic and
  • Markus Nett

Beilstein J. Org. Chem. 2016, 12, 594–607, doi:10.3762/bjoc.12.58

Graphical Abstract
  • reaction [109][110]. The althiomycin biosynthetic gene cluster was recently identified in M. xanthus DK897 by a combination of retrobiosynthetic analysis and gene inactivation [111]. Two open reading frames (ORFs) encoding for a nonribosomal peptide synthetase (NRPS) and a NRPS/polyketide synthase (PKS
  • Roseiflexus spp. for the production of natural products is negligible [122], the Herpetosiphon genomes contain a significant number of biosynthetic loci (Table 3). Unlike actinomycete genomes, which are particularly rich in polyketide pathways [123], the Herpetosiphon chromosomes were found to be dominated by
PDF
Album
Review
Published 30 Mar 2016

Biosynthesis of α-pyrones

  • Till F. Schäberle

Beilstein J. Org. Chem. 2016, 12, 571–588, doi:10.3762/bjoc.12.56

Graphical Abstract
  • biosynthesis of these mostly polyketide-derived structures exist, thus it is assumed that the route towards α-pyrones has been developed several times in evolution. They can be built up by the catalytic activities of the different types of polyketide synthase (PKS) systems, and especially the final ring
  • following polymerization to fatty acids [34]. Now, it is generally accepted that most α-pyrones are synthesized via the polyketide pathway. Solely for plant-derived ellagitannins another biosynthetic origin was described. Via the shikimate pathway gallic acid is generated, which represents the precursor in
  • ellagitannin biosynthesis [73]. The ellagitannins can then be hydrolyzed to ellagic acid (22), and subsequently converted to urolithins (23–27). In microorganisms the PKS-derived origin was independently postulated for numerous compounds. The polyketide biosynthesis has much in common with fatty acid
PDF
Album
Review
Published 24 Mar 2016

Natural products from microbes associated with insects

  • Christine Beemelmanns,
  • Huijuan Guo,
  • Maja Rischer and
  • Michael Poulsen

Beilstein J. Org. Chem. 2016, 12, 314–327, doi:10.3762/bjoc.12.34

Graphical Abstract
  • microbes, indicating a ”first chemical defense line” and ”long term prophylaxis” of P. triangulum ensuring protection and enhanced survival rates of the offspring. In a similar study, a detailed chemical analysis of rove beetles (Paederus spp.) led to the isolation of the complex polyketide pederin (3), a
  • citrus psyllid and the β-proteobacterium ”Candidatus Profftella armatura” [54][55]. A genome analysis of Profftella, which resides in a symbiotic organ called the bacteriome, revealed that 15% of the drastically reduced genome encoded horizontally acquired genes for the biosynthesis of the polyketide
  • dentigerumycin (5) that selectively inhibits the growth of the nest parasite Escovopsis but not the ants’ mutualistic fungus at micromolar concentrations [77]. Dentigerumycin bears an unusual amino acid core skeleton including three piperazic acids, β-hydroxyleucine, N-hydroxyalanine, and a polyketide-derived
PDF
Album
Review
Published 19 Feb 2016

Recent highlights in biosynthesis research using stable isotopes

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2015, 11, 2493–2508, doi:10.3762/bjoc.11.271

Graphical Abstract
  • may not precisely follow the IUPAC rules. Review Polyketides Polyketide synthases (PKS) are multidomain enzymes that catalyze the formation of natural products via reaction steps similar to fatty acid biosynthesis, in which C2-units are fused in Claisen condensations and modified in an iterative or
  • reductase [16], aflatoxin B1 (2) [17] and the potent antifungal agent amphotericin B (3) [18], which affects membrane integrity. The products of polyketide synthases (PKS) belong to the first secondary metabolites that were investigated using isotopically labeled compounds [19]. Feeding experiments using
  • malonyl moiety to the α,β-unsaturated thioester bound to the keto-synthase domain (KS). After this reaction, the polyketide chain is bound to the KS and the acyl carrier protein (ACP). The following lactonization to generate the δ-lactone structure in 4 can either proceed via nucleophilic attack of the δ
PDF
Album
Review
Published 09 Dec 2015

Preparation of conjugated dienoates with Bestmann ylide: Towards the synthesis of zampanolide and dactylolide using a facile linchpin approach

  • Jingjing Wang,
  • Samuel Z. Y. Ting and
  • Joanne E. Harvey

Beilstein J. Org. Chem. 2015, 11, 1815–1822, doi:10.3762/bjoc.11.197

Graphical Abstract
  • aldehyde. Primary and secondary alcohols, including allylic alcohols, are suitable substrates; the newly formed alkene has an E-geometry. Strategically, this represents a highly efficient route to unsaturated polyketide derivatives. A linchpin approach to the synthesis of a major fragment of the natural
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2015

Structure and conformational analysis of spiroketals from 6-O-methyl-9(E)-hydroxyiminoerythronolide A

  • Ana Čikoš,
  • Irena Ćaleta,
  • Dinko Žiher,
  • Mark B. Vine,
  • Ivaylo J. Elenkov,
  • Marko Dukši,
  • Dubravka Gembarovski,
  • Marina Ilijaš,
  • Snježana Dragojević,
  • Ivica Malnar and
  • Sulejman Alihodžić

Beilstein J. Org. Chem. 2015, 11, 1447–1457, doi:10.3762/bjoc.11.157

Graphical Abstract
  • ; spiroketal; Introduction Macrolide antibiotics are natural or semi-synthetic products of polyketide origin, containing one or more desoxy sugars attached to a macrocyclic lactone aglycon. This large and structurally diverse category of compounds has traditionally been divided into classes based on the
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2015

A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis

  • Darko Kresovic,
  • Florence Schempp,
  • Zakaria Cheikh-Ali and
  • Helge B. Bode

Beilstein J. Org. Chem. 2015, 11, 1412–1417, doi:10.3762/bjoc.11.152

Graphical Abstract
  • phosphopantetheinyl-transferase (PPtase) activity of NgrA [18]. Results and Discussion Usually pyrones are derived in a one-chain mechanism from type III polyketide synthases [2][19] rarely showing two alkyl substituents resulting from the incorporation of different extender units [20]. Contrary to this, experiments
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Natural phenolic metabolites with anti-angiogenic properties – a review from the chemical point of view

  • Qiu Sun,
  • Jörg Heilmann and
  • Burkhard König

Beilstein J. Org. Chem. 2015, 11, 249–264, doi:10.3762/bjoc.11.28

Graphical Abstract
  • from the polyketide pathway and mainly accumulate in Hypericaceae [54] and Clusiaceae. Hyperforin, likely the most prominent acylphloroglucinol derivative and present in higher concentration in St. John’s wort (Hypericum perforatum L., Hypericaceae), has been recently reported to exhibit strong
PDF
Album
Review
Published 16 Feb 2015

De novo macrolide–glycolipid macrolactone hybrids: Synthesis, structure and antibiotic activity of carbohydrate-fused macrocycles

  • Richard T. Desmond,
  • Anniefer N. Magpusao,
  • Chris Lorenc,
  • Jeremy B. Alverson,
  • Nigel Priestley and
  • Mark W. Peczuh

Beilstein J. Org. Chem. 2014, 10, 2215–2221, doi:10.3762/bjoc.10.229

Graphical Abstract
  • macrocycle through the C1’ (glycosidic) and C6’ oxygens. The new macrolides bear a resemblance to sophorolipid lactone 2 and to polyketide macrocycles that contain a tetrahydropyran moiety [20][21][22]. We report on the synthesis, X-ray crystal structures and antibiotic activities of the new compounds
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2014

Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5

  • Ulrike Groenhagen,
  • Michael Maczka,
  • Jeroen S. Dickschat and
  • Stefan Schulz

Beilstein J. Org. Chem. 2014, 10, 1421–1432, doi:10.3762/bjoc.10.146

Graphical Abstract
  • . Keywords: headspace analysis; natural products; polyketide biosynthesis; pyridine derivatives; streptazolin; volatile compounds; Introduction Actinomycetes are excellent producers of diverse and bioactive secondary metabolites. These metabolites belong to many different structural classes including
  • derivatives streptazones B1 (1), B2 (2), C (3), the 4-pyridone derivative streptazone D (4) with a pentadienyl side chain, and streptazolin (5) (Figure 1) [8]. Streptazolin is produced by several streptomycetes [8][9][10][11][12], and is formed biosynthetically by a polyketide mechanism [13]. The respective
  • polyketide synthase gene cluster has not been identified yet. The streptazones are relatively small compounds suggesting that they may be volatile enough to find them in the headspace above bacterial cultures, although the presence of hydrogen bond donor and acceptor sites hints to good solubility in the
PDF
Album
Supp Info
Video
Full Research Paper
Published 24 Jun 2014

4-Hydroxy-6-alkyl-2-pyrones as nucleophilic coupling partners in Mitsunobu reactions and oxa-Michael additions

  • Michael J. Burns,
  • Thomas O. Ronson,
  • Richard J. K. Taylor and
  • Ian J. S. Fairlamb

Beilstein J. Org. Chem. 2014, 10, 1159–1165, doi:10.3762/bjoc.10.116

Graphical Abstract
  • of pyronyl ethers is useful in itself, the ability to introduce an unsaturated group onto the oxygen, leading to a pyronyl enol ether, would have additional value. This is a highly unusual motif found in some marine polyketide natural products (such as compound 1, Figure 1). Conjugate addition to α,β
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2014

Cuevaenes C–E: Three new triene carboxylic derivatives from Streptomyces sp. LZ35ΔgdmAI

  • Jing-Jing Deng,
  • Chun-Hua Lu,
  • Yao-Yao Li,
  • Shan-Ren Li and
  • Yue-Mao Shen

Beilstein J. Org. Chem. 2014, 10, 858–862, doi:10.3762/bjoc.10.82

Graphical Abstract
  • triene structural moiety is rarely found in natural products. Streptomyces sp. LZ35 was isolated from the intertidal soil collected at Jimei, Xiamen, China [3]. An orphan type I polyketide synthase gene cluster that contains a putative chorismatase/3-hydroxybenzoate synthase gene was identified by genome
  • employed in the polyketide chain extension. In addition, several post-PKS modifications are required to complete the biosynthesis of cuevaenes [4]. In this study, two pairs of geometrical isomers were reported. The difference between the geometrical isomers is the stereoconfiguration of the Δ4,5 double
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2014

Synthesis of complex intermediates for the study of a dehydratase from borrelidin biosynthesis

  • Frank Hahn,
  • Nadine Kandziora,
  • Steffen Friedrich and
  • Peter F. Leadlay

Beilstein J. Org. Chem. 2014, 10, 634–640, doi:10.3762/bjoc.10.55

Graphical Abstract
  • , United Kingdom 10.3762/bjoc.10.55 Abstract Herein, we describe the syntheses of a complex biosynthesis-intermediate analogue of the potent antitumor polyketide borrelidin and of reference molecules to determine the stereoselectivity of the dehydratase of borrelidin polyketide synthase module 3. The
  • target molecules were obtained from a common precursor aldehyde in the form of N-acetylcysteamine (SNAc) thioesters and methyl esters in 13 to 15 steps. Key steps for the assembly of the polyketide backbone of the dehydratase substrate analogue were a Yamamoto asymmetric carbocyclisation and a Sakurai
  • polyketide-derived thioesters suited for biosynthesis studies. Keywords: aldol reaction; coenzyme A; natural products; pig liver esterase; polyketide biosynthesis; protection groups; Introduction Borrelidin (1) is a macrolactone polyketide natural product with promising antibacterial, antimalarial
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2014

Preparation of new alkyne-modified ansamitocins by mutasynthesis

  • Kirsten Harmrolfs,
  • Lena Mancuso,
  • Binia Drung,
  • Florenz Sasse and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2014, 10, 535–543, doi:10.3762/bjoc.10.49

Graphical Abstract
  • ]. In the present case, 1 is loaded on the starter module of the polyketide synthase (Scheme 1). The last PKS module releases and cyclizes seco-proansamitocin, likely by an ansamycin amide synthase (gene asm9) [23][24][25][26][27], that generates the 19-membered macrocyclic lactam proansamitocin (2
  • polyketide synthase in A. pretiosum and thus no formation of new ansamitocin derivatives was encountered in these cases. In contrast, benzoic acid 11 provided Br-F-ansamitocin derivatives 21a–d after being fed to a growing culture of the mutant strain as judged by HRMS (Scheme 4). The retention times in LC
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding

  • Wolfgang Hüttel,
  • Jonathan B. Spencer and
  • Peter F. Leadlay

Beilstein J. Org. Chem. 2014, 10, 361–368, doi:10.3762/bjoc.10.34

Graphical Abstract
  • for the key role of late-stage hydroxylation at C-26 of the monensin molecule. Like other polyether ionophores, monensin is assembled by the polyketide biosynthetic pathway on a modular polyketide synthase (PKS) multienzyme [14]. A model has been proposed [14] for monensin biosynthesis in which an
  • cyclisation is not initiated before the full-length chain is produced, and that the initial product of the PKS is a linear enzyme-bound (E,E,E)-triene, “premonensin” (2) [19]. The monensin PKS does not have a conventional C-terminal thioesterase domain that would catalyse polyketide chain release, and instead
  • with the polyketide in thioester linkage to a discrete acyl carrier protein (MonACPX) [20], and therefore the terminal carboxylate is not available as an alternative ligand for the bound cation until all the tailoring steps have been accomplished and the mature antibiotic is released by thioesterase
PDF
Album
Letter
Published 10 Feb 2014

The regulation and biosynthesis of antimycins

  • Ryan F. Seipke and
  • Matthew I. Hutchings

Beilstein J. Org. Chem. 2013, 9, 2556–2563, doi:10.3762/bjoc.9.290

Graphical Abstract
  • . Biosynthesis of the antimycin dilactone core Antimycins are produced by a hybrid non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) assembly line for which the complete biosynthetic pathway has been proposed [25][34] (Figure 3). The biosynthesis of antimycins involves the activities of fourteen
PDF
Album
Review
Published 19 Nov 2013

Synthesis of the spiroketal core of integramycin

  • Evgeny. V. Prusov

Beilstein J. Org. Chem. 2013, 9, 2446–2450, doi:10.3762/bjoc.9.282

Graphical Abstract
  • ; hydrozirconation; natural products; spiroketals; total synthesis; Findings Integramycin is a polyketide natural product isolated from Actinoplanes sp. by the Singh group at Merck [1] (Figure 1). The compound was found to inhibit HIV-1 integrase coupled strand transfer reactions with IC50 values of 3 and 4 μM
PDF
Album
Supp Info
Letter
Published 12 Nov 2013

The chemistry of isoindole natural products

  • Klaus Speck and
  • Thomas Magauer

Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243

Graphical Abstract
  • B (52) as a model system [51][52][53][54][55]. It was hypothesized that the carbon backbone, which is connected to an amino acid, most likely originates from a polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) hybrid machinery [56]. The discovery of a gene locus for a PKS-NRPS
  • isopentyl pyrophosphate (IPP, 166), and orsellinic acid (168), which is derived from a fungal iterative type I polyketide pathway [142], are connected to give 169. This substrate is already poised for a polyene cyclization cascade, which only has to be triggered via activation of the epoxide. After the
  • contain the same prenylated polyketide core imply a direct biosynthetic relationship [147]. The reaction of 192 with an equivalent of ammonia gives a cyclic iminohemiaminal, which first tautomerizes to the hydroxy isoindole and then to the isoindolinone 193. This biosynthetic transformation was also used
PDF
Album
Video
Review
Published 10 Oct 2013

Activation of cryptic metabolite production through gene disruption: Dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi

  • Dinesh Simkhada,
  • Huitu Zhang,
  • Shogo Mori,
  • Howard Williams and
  • Coran M. H. Watanabe

Beilstein J. Org. Chem. 2013, 9, 1768–1773, doi:10.3762/bjoc.9.205

Graphical Abstract
  • compound as dimethyl furan-2,4-dicarboxylate, which has been previously observed in microbial head-space or vapor phase extracts and its structure determined through chemical synthesis [15]. The biosynthetic origin of dimethyl furan-2,4-dicarboxylate could be polyketide derived where the furan ring system
  • implicated a pyruvate aldolase and methyltransferase containing gene cluster as well as potential polyketide gene clusters containing methyltransferase genes, which will be evaluated in due course through genetic knockout experiments of the ΔaziA2 mutant strain. Disruption of the aziA2 gene gave
PDF
Album
Supp Info
Letter
Published 29 Aug 2013

New tridecapeptides of the theonellapeptolide family from the Indonesian sponge Theonella swinhoei

  • Annamaria Sinisi,
  • Barbara Calcinai,
  • Carlo Cerrano,
  • Henny A. Dien,
  • Angela Zampella,
  • Claudio D’Amore,
  • Barbara Renga,
  • Stefano Fiorucci and
  • Orazio Taglialatela-Scafati

Beilstein J. Org. Chem. 2013, 9, 1643–1651, doi:10.3762/bjoc.9.188

Graphical Abstract
  • reference compound in the class of actin interacting cell growth inhibitors [5]), polyene derivatives (as aurantosides [6]), and polypeptides/depsipeptides. The biosynthesis of several secondary metabolites of Theonella has been ascribed to symbiotic microorganisms, as in the case of the polyketide onnamide
  • , Indonesia), which proved to be rich in aurantosides [6] and 4-methylene steroids [18], while polyketide macrolides and peptide-based derivatives were extremely rare if not absent. Remarkably, the chemical analysis of a different specimen of T. swinhoei, collected in the same area as the previous one
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2013

Quantification of N-acetylcysteamine activated methylmalonate incorporation into polyketide biosynthesis

  • Stephan Klopries,
  • Uschi Sundermann and
  • Frank Schulz

Beilstein J. Org. Chem. 2013, 9, 664–674, doi:10.3762/bjoc.9.75

Graphical Abstract
  • Polyketides are biosynthesized through consecutive decarboxylative Claisen condensations between a carboxylic acid and differently substituted malonic acid thioesters, both tethered to the giant polyketide synthase enzymes. Individual malonic acid derivatives are typically required to be activated as coenzyme
  • A-thioesters prior to their enzyme-catalyzed transfer onto the polyketide synthase. Control over the selection of malonic acid building blocks promises great potential for the experimental alteration of polyketide structure and bioactivity. One requirement for this endeavor is the supplementation of
  • the bacterial polyketide fermentation system with tailored synthetic thioester-activated malonates. The membrane permeable N-acetylcysteamine has been proposed as a coenzyme A-mimic for this purpose. Here, the incorporation efficiency into different polyketides of N-acetylcysteamine activated
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2013

Unprecedented deoxygenation at C-7 of the ansamitocin core during mutasynthetic biotransformations

  • Tobias Knobloch,
  • Gerald Dräger,
  • Wera Collisi,
  • Florenz Sasse and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2012, 8, 861–869, doi:10.3762/bjoc.8.96

Graphical Abstract
  • ansamitocin producer [13][14][15][16][17], and Streptomyces hygroscopicus, the geldanamycin producer [18][19]. These engineered strains are unable to biosynthesize 3-amino-5-hydroxybenzoic acid (1) [20], the common starter unit for both polyketide synthases (PKS) (Scheme 1). These assembly-line-type
  • multienzymes are responsible for setting up the complete carbon backbone of both ansamycin antibiotics [21][22][23][24]. More precisely, the biosynthesis of ansamitocins relies on a type I modular polyketide synthase (PKS), with 3-amino-5-hydroxybenzoic acid (1, AHBA) [20] as the starter unit followed by chain
PDF
Album
Supp Info
Video
Full Research Paper
Published 11 Jun 2012

Identification and isolation of insecticidal oxazoles from Pseudomonas spp.

  • Florian Grundmann,
  • Veronika Dill,
  • Andrea Dowling,
  • Aunchalee Thanwisai,
  • Edna Bode,
  • Narisara Chantratita,
  • Richard ffrench-Constant and
  • Helge B. Bode

Beilstein J. Org. Chem. 2012, 8, 749–752, doi:10.3762/bjoc.8.85

Graphical Abstract
  • protein or polyketide synthase or nonribosomal peptide synthetase) bound. Supporting Information Supporting Information File 114: General experimental procedures, isolation of the strain and taxonomic identification, cultivation and extraction, isolation, labeling experiments, synthesis, bioactivity
PDF
Album
Supp Info
Letter
Published 18 May 2012

Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans

  • Cornelia Chizzali and
  • Ludger Beerhues

Beilstein J. Org. Chem. 2012, 8, 613–620, doi:10.3762/bjoc.8.68

Graphical Abstract
  • pathways. Elicitor-treated cell cultures of Sorbus aucuparia served as a model system for studying phytoalexin metabolism. The key enzyme that forms the carbon skeleton is biphenyl synthase. The starter substrate for this type-III polyketide synthase is benzoyl-CoA. In apples, biphenyl synthase is encoded
  • ]. Biosynthesis of biphenyls and dibenzofurans The key enzyme of the biosynthetic pathway is biphenyl synthase (BIS) [22]. This type-III polyketide synthase (PKS) catalyzes the iterative condensation of benzoyl-CoA with three acetyl units from the decarboxylation of malonyl-CoA to form a linear tetraketide
PDF
Album
Review
Published 20 Apr 2012
Other Beilstein-Institut Open Science Activities