Search results

Search for "cantilever" in Full Text gives 309 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • –tip preparation. The main chamber is pumped with a combination of an ion getter pump, titanium sublimation pump and a turbomolecular pump backed with a double-stage rotary pump. A base pressure of about 10−10 mbar is achievable by baking out the chamber. The oscillation amplitude of the cantilever
  • taken on several samples showed the presence of dominantly single-layer graphene [36]. Results and Discussion We used a custom-made tungsten tip–cantilever probe [32] the stiffness of which was estimated from thermal oscillations to be about 53 N/m. The simultaneously acquired STM topography and force
  • tunneling current. In our simultaneous STM/AFM experiments, we used the tunnel current to control the tip–surface distance. Evidently, tunnel currents as small as 0.1–0.2 nA keep the interaction beyond the minimum of the force curve. Another set of simultaneous scans obtained using the same W cantilever at
PDF
Album
Full Research Paper
Published 28 Nov 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • to access the state of contamination of real surfaces under ambient conditions using advanced atomic force microscopy techniques. Keywords: atomic force microscopy; cantilever; contact potential; electrostatic forces; force spectroscopy; Hamaker constant; Kelvin probe microscopy; surface
  • of contamination as the rest of the cantilever and as the chip onto which the tip and cantilever are attached. Second, we will assume that by precisely measuring the tip–sample interaction we can infer properties related to the surface energy as well as the contact potential, which allows one to
  • access the chemistry of the tip–sample system. Results and Discussion Topographic imaging of the tip and the flat part of a cantilever Figure 1 shows images where the lower side of the cantilever, that is, the side with the sensing tip, has been used as the sample. As discussed below, tip imaging can be
PDF
Album
Full Research Paper
Published 23 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • techniques of atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In both cases, a probe is scanned over a sample and the interaction is used to study the sample properties. For AFM, the atomic force between a sharp tip at the end of a cantilever beam and the sample surface is measured by
  • read-out of the cantilever bending. The STM uses the tunneling current between a tip and the surface to obtain information about the sample surface [106][107]. Scanning probe nanolithography uses the interaction of such a tip with the sample to nanostructure its surface. For the purpose of this review
  • in turn depends on the distance between tip and sample. The hybrid STM/AFM system from Quate et al. [145] uses two simultaneously operating feedback loops: one to keep the tip–sample distance constant by measuring the cantilever deflection and adjusting the z-position of the scanner, and the second
PDF
Album
Review
Published 14 Nov 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  •  4a reviews three arbitrarily chosen force-vs-distance curves obtained with a sand probe, spherical probe and sharp tip. All curves feature a typical shape [23]. During the approach of the cantilever towards the sample (trace) the tip–sample force is almost zero and shows a small negative peak when
  • aim to scratch the surface of the samples. To achieve such a large normal load, we utilized cantilevers with a nominal spring constants of 40 N/m. To avoid that tip wear influences the scratching tests, we started every experiment with a fresh cantilever with a pristine tip. On each sample, we
  • left to right and top to bottom). The deflection sensitivity (Sver) varied for every pristine cantilever used for each sample. This effect causes a slight difference on normal load on each sample because we had to increase the loading force in voltage steps (Fload = cz·Sver·(Usetpoint − Udis)). The
PDF
Album
Full Research Paper
Published 02 Oct 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • Julia Korner University of Utah, 50 S. Central Campus Dr #2110, Salt Lake City, Utah, 84112, USA 10.3762/bjnano.9.237 Abstract Background: Co-resonant coupling of a micro- and a nanocantilever can be introduced to significantly enhance the sensitivity of dynamic-mode cantilever sensors while
  • and the degree of frequency matching. Consequently, while an individual cantilever is characterized by its eigenfrequency, spring constant, effective mass and quality factor, the resonance peaks of the co-resonantly coupled system can be described by effective properties which are a mixture of both
  • -resonant system’s effective properties. While the effective spring constant and effective mass mainly define the sensitivity of the coupled cantilever sensor, the effective quality factor primarily influences the detectability. Hence, a balance has to be found in optimizing both parameters in sensor design
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • . lividus could be easily collected on mica (Figure 1a,b) and subsequently located using an optical microscope to be precisely positioned beneath the AFM cantilever (Figure 1c). The diameter of the adhesive footprints roughly corresponded to the size of the tube feet discs (±1 mm). The thickness of the
  • silicon nitride cantilever with a silicon tip (SNL, Bruker) with a spring constant of 0.12 N/m. All of the above-mentioned probes were calibrated on a stiff sample, to access tip deflection sensitivity, followed by thermal tuning to determine the spring constant. At least five sea urchin adhesive
  • ×) illustrating the positioning of the moist adhesive footprint (indicated by the arrow) beneath the triangular-shaped AFM cantilever. Peak force tapping AFM (PFT-AFM) image (a) and height profile (b) of Paracentrotus lividus moist footprints at the edge of the adhesive material. Image obtained with a ScanAsyst
PDF
Album
Full Research Paper
Published 24 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • (Bruker Nano Inc., Santa Barbara, CA) using AFM in tapping mode. Tapping mode AFM was performed in amplitude modulation mode. The height of the cantilever position is constantly adjusted (via a feedback loop) to keep constant the ratio of the tip vibrational amplitude in contact with the sample surface to
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • microHall-A300 tool from CAPRES A/S and an M7PP with an electrode pitch of 10 μm. The M7PP used consisted of nickel-coated poly-silicon cantilever electrodes extending from the edge of a silicon die. A magnetic field with the flux density Bz = 600 mT was applied perpendicular to a boron-doped (1015 cm−2
PDF
Album
Full Research Paper
Published 20 Jul 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • results are useful in the design of piezotronics and piezo-phototropic devices and the corresponding applications. A circular ZNW cantilever exposed to a force P at the free end. Nonlinearity as a result of carrier drift for n0 = 1.0·1023m−3 as a function of the end force P. a) P = 0.7, 1.5, 3.0, 5.0 and
PDF
Album
Full Research Paper
Published 04 Jul 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • improvements in bandwidth or resonance frequency of all of the components constituting the tip–sample distance regulation loop, such as the cantilever, cantilever excitation unit, cantilever deflection sensor, scanner, feedback controller, and phase-locked loop (PLL) circuit. In particular, the PLL circuit is
  • (TDS2002B, Tektronix). The experimental data presented below in Figure 7 and Figure 8 were obtained using a standard-size cantilever (NCH, Nanoworld; f0 = 151.46 kHz, k = 41.3 N/m and Q = 9) and an ultra-short cantilever (USC, Nanoworld; f0 = 3.44 MHz, k = 59.9 N/m and Q = 7). The cantilever vibrations were
  • -speed FM-AFM imaging was performed in the deposited water using an AC55 (Olympus) cantilever (f0 = 1.53 MHz, Δf = 1.6 kHz, A = 0.1 nm). The cantilever vibrations were excited and detected using the same setups that were employed for the PLL performance measurements. For the high-speed operation of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • experimental setup are given in the figure caption and in [7]. The FM- and AM-KPFM data was collected in subsequent measurements with the same cantilever on the same solar cell cross section. However, the resolved potential distributions differed significantly. In dark, the potential drop from FTO to gold
  • . Since the invention of KPFM, a vast number of studies have investigated differences in lateral and voltage resolution of AM and FM methods. Polak et al. have investigated, how AC coupling between excitation and cantilever deflection signal affects the measured potentials in AM-KPFM [16]. Generally, FM
  • -KPFM is less affected by AC crosstalk artefacts, as excitation and detection are performed at different frequencies. Other influences that have been investigated were the cantilever orientation with respect to a structured sample [17], the tip–sample distance [17][18][19][20], topographic or capacitive
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • underpins nearly all AFM topography imaging. Normally, this feedback loop continually updates the AFM probe height in order to maintain a constant AFM tip–sample interaction, which is sensed via the integrated cantilever deflection or amplitude that, of course, changes at surface protrusions or depressions
  • secondary PID loop varies the sample bias to maintain a fixed cantilever amplitude, phase, or frequency. The capacitive and/or coulombic interactions that perturb these signals null when the probe bias equals the ensemble specimen voltage beneath the tip, providing a directly measured map of local surface
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • by AFM under illumination originate mainly from the intrinsic material deformation [16]. More precisely, thanks to a rigorous experimental protocol, they demonstrated that it is possible to discriminate between the intrinsic material deformation and the extrinsic effects related to the AFM cantilever
  • of nanometers. KPFM measurements were carried out in single-pass mode under frequency modulation (FM-KPFM) with the modulation bias, VAC (typically 0.5 V peak-to-peak at 1200 Hz), and the compensation voltage, VDC, applied to the cantilever (tip bias Vtip = VDC). The contact potential difference (CPD
  • our measurement) and does not scale with the illumination time. Consistent with the conclusions of the former work by Zhou et al. [16], this strongly supports the idea that the “fast” cantilever height photoresponse originates from an intrinsic photostriction effect (and not from a thermally induced
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • energy-dispersive spectroscopy (EDS) detector) operating at 200 kV for imaging and elemental characterization. Roughness and topography of the as-grown MoS2 NSs (before transfer) were examined by atomic force microscope (AFM). The AFM scans were recorded in resonant mode (AppNanoTM made cantilever with
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • ultra-sharp tip is scanned across the surface line by line probing a square frame. Lateral forces acting on the sliding contact are determined as deflection of a cantilever spring holding the tip. Single-asperity contact ageing between silica tip and surface has been directly observed in ambient
  • (H21D; Epoxy Technology, Inc., USA) to a metal tip holder. In order to remove water and physisorbed hydrocarbons, holder and cantilever were transferred into the preparation chamber of an ultrahigh vacuum system (p = 10−10 mbar) and heated to 120 °C for several hours until the pressure had stabilized
  • . The holder was then transferred into the measurement chamber with the FFM experiment. Normal and lateral spring constant of each cantilever were calculated from the resonance frequency and the dimensions of cantilevers and tips. The tip height was assessed individually from SEM images of the
PDF
Album
Full Research Paper
Published 05 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • ]. Further information on how to connect this instrument to a Bruker Dimension Icon AFM is described in [35]. The applied AC frequency must match the contact resonance frequency of the cantilever used, and is exactly given in the respective figure caption. To ensure a stable tip–sample interaction, a slow
PDF
Album
Full Research Paper
Published 28 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip–sample interaction forces even when
  • actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate
  • , or vacuum environments. Keywords: amplitude calibration; atomic force microscopy; electrostatic excitation; encased cantilevers; liquid AFM; Introduction Dynamic atomic force microscopy requires excitation of the cantilever oscillation. Most commonly, this is achieved using a dither piezo built
PDF
Album
Full Research Paper
Published 08 May 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • precursor, thus highlighting the importance of the actual chemical nature of the substrate [31]. This Thematic Series is completed by publications on interesting applications of FEBID. This concerns the fabrication and characterization of magnetic cobalt nanospheres on cantilever tips for magnetic resonance
PDF
Editorial
Published 30 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due to frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias
  • match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a
  • model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam
PDF
Album
Full Research Paper
Published 24 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • cantilever (Figure 3a). Because of polarization, opposing charges are induced at the vicinity of the sample surface, causing an attractive force between the tip and the sample, which leads to a phase shift of the cantilever. In the absence of electrical forces, the cantilever has a resonant frequency, f0
  • . However, the tip bias causes an attractive (or repulsive) electrostatic force, making the cantilever effectively “softer” (“stiffer”), reducing (increasing) the resonant frequency [28][29]. The phase curve then correctly reflects the phase lag between the drive and the cantilever response (Figure 3b) [29
  • ]. This correspondingly results in a negative (or positive) phase shift of the cantilever, as labelled with red (or blue) in the Figure 3b. The case of repulsive electrostatic forces (in the parentheses) usually occurs when the sample itself is charged [21]. However, in the experiments here, electrostatic
PDF
Album
Full Research Paper
Published 11 Apr 2018

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can
  • in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a
  • versatility of the instrument, it has been proposed to use higher cantilever eigenmodes, either by themselves in single-eigenmode imaging [6][7][8][9] or within multifrequency techniques [10]. For example, in the original multifrequency AFM method, introduced by Garcia and coworkers and known as bimodal AFM
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • before use. Methods Experiments have been conducted using the colloidal probe atomic force microscopy technique (CP-AFM) as introduced by Ducker and Butt [60][61]. For this method, a large silica sphere, 6.7 μm in diameter, is glued (UHU endfest 300) onto the tip of a cantilever (CSC38 tipless micromash
  • ) serving as colloidal probe. The spring constant of the cantilever was determined via the thermal noise method [62]. The surface of the colloidal probe and the silicon wafer form the two confining walls for the experiment. As the colloidal probe is orders of magnitude larger than their distance, the forces
  • an increased variation for the amplitude (24.4%) and the decay length (14.5%) for experiments conducted with different cantilevers/colloidal probes (nine measurements) compared to experiments conducted with the same cantilever/colloidal probe (five measurements), where the amplitude varied by 7.2
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Automated image segmentation-assisted flattening of atomic force microscopy images

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li and
  • Huimin Wang

Beilstein J. Nanotechnol. 2018, 9, 975–985, doi:10.3762/bjnano.9.91

Graphical Abstract
  • while the z-scanner adjusts the vertical position of the AFM cantilever substrate to maintain constant interaction between the cantilever tip and sample surface. Together, the two stages provide a three-dimensional (3D) topographical reconstruction of the sample surface. However, the obtained images are
  • AFM (Resolve, Bruker) in tapping mode with 96% setpoint value. A silicon cantilever (NSC36/ALBS, MikroMasch) with quoted stiffness of 0.6 N/m and tip radius of 8 nm was used for scanning. The scanning frequency and scanning angle were 2 Hz and 0°, respectively. Methods The step-by-step procedure of
PDF
Album
Full Research Paper
Published 26 Mar 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • data acquired under (no) illumination. A plot enabling a direct comparison of all data for −3 V < VTip < 3 V and their variation according region and illumination condition is shown in Figure S3 in Supporting Information File 1. In conventional EFM, cantilever oscillation frequency shift (∆ω) can be
  • resulting from permanent polarization or free charges on the surface [34]. In a simpler form, Equation 1 can be rewritten as According to Equation 1 and Equation 2, and since all EFM experiments were performed using the same cantilever and at a fixed lift height (fixed capacitance geometry), ∆ω in each
  • smaller than the symbol size in the graphs). The SKPM imaging was performed in the amplitude mode (AM-SKPM) with an AC bias VAC = 2 V applied to the probe at the resonant frequency of the cantilever and a lift height z = 20 nm. Steady-state photoluminescence (PL) measurements of RA monolayer/graphene
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Scanning speed phenomenon in contact-resonance atomic force microscopy

  • Christopher C. Glover,
  • Jason P. Killgore and
  • Ryan C. Tung

Beilstein J. Nanotechnol. 2018, 9, 945–952, doi:10.3762/bjnano.9.87

Graphical Abstract
  • dependence has also been observed in contact-resonance spectroscopy experiments. Killgore et al. [3] reported a scan-speed dependence of the measured CR frequencies of an AFM cantilever. Above a critical speed, CR frequency and quality factor decreased with increasing scan speed. However, in that work, the
  • Equation 2 can be neglected. Integrating across the length of the channel, we obtain the vertical lift force F: The fluid film stiffness is then given by: In order to measure the sample stiffness using CR, we use a combination of measured in-contact resonance frequencies. The cantilever beam is modeled as
  • , in the absence of a fluid layer, is defined as α = ks/kc, where ks is the sample stiffness and kc is the static cantilever stiffness (). The characteristic equation has the form . Using the measured in-contact frequencies, we can calculate the non-dimensional wavenumbers using the relation where
PDF
Album
Full Research Paper
Published 21 Mar 2018
Other Beilstein-Institut Open Science Activities