Search results

Search for "fabrication" in Full Text gives 885 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • monitoring of PAAO layer growth and the termination of the process at a desired PAAO thickness for reliable fabrication of subwavelength optical coatings with thickness below 300 nm. Results and Discussion The obtained PAAO layer structure (Figure 1a) with a hexagonal pore arrangement, ≈100 nm center-to
PDF
Album
Full Research Paper
Published 31 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • . Conclusion The article presents a one-stage method for the fabrication of polymer composites based on a hydrogel in which MnCo2O4 as the catalyst (MCO) and conductive carbon black particles as conductive fillers have been embedded. In the developed synthesis method, the need to use high temperature was
  • omitted, which is an element that distinguishes the applied procedure from others described in most literature reports. Scanning electron microscopy studies confirmed the fabrication of a composite polymer containing MCO catalyst particles and conductive carbon cCB particles either caught inside or bound
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • efficient reduction of electron temperature down to 65 mK from a base temperature of 300 mK [22]. Here we present improved simulation results in comparison with [24] and the first results of fabrication and measurements, using YBa2Cu3O7 (YBCO) Josephson junction (JJ) oscillators, of a dichroic multiabsorber
  • for the 240 GHz channel is 34.8 GHz, and the maximum absorption occurs at a frequency of 239.6 GHz. Fabrication of samples of receiving systems with CEBs The samples and the sample blanks with electronic lithography, ready for electron beam evaporation, were fabricated at the Chalmers University of
  • the legend, one should divide the voltage by 3.75 × 106. Acknowledgements The CEB sample blanks were fabricated in the Department of Microtechnology and Nanoscience of the Chalmers University of Technology. The YBCO JJ sample fabrication and SEM images acquisition were performed using the facilities
PDF
Album
Full Research Paper
Published 04 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • using three different fabrication methods: lift-off, ion beam etching (IBE), and stencil lithography. They were further analyzed using different instruments, including scanning electron microscopy, LTEM, and electron holography. A bilayer of positive PMMA resist was utilized in the first fabrication
  • advantageous in terms of structural resolution, process simplicity, and the absence of resist residues [21]. We have fabricated ferromagnetic nanodisks on a conventional TEM grid from TedPella® using three different fabrication methods. In the first method, a bilayer of positive PMMA resist yielded an undercut
  • ion beam. This method avoids the resist-based fabrication, which is common in preparing nanodisk samples for TEM [8][20]. We have also developed a method of sample preparation for patterned nanostructures starting from a bulk substrate. This method is versatile and might be useful for more complicated
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • fabrication of functional gold nanostructures for application in plasmonic and detector technology, we conducted a comprehensive study on [Au(CH3)2Cl]2 as a potential precursor for such depositions. Fundamental electron-induced dissociation processes were studied under single collision conditions, and the
  • nanostructures are critical for the enhancement of absorption and controlled scattering of light [10]. Focused-electron-beam-induced deposition (FEBID) is a direct writing method for controlled deposition/fabrication of nanostructures on either flat or nonflat surfaces. It offers excellent shape control and thus
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • fabrication. For instance, traditional techniques, such as electron-beam lithography, laser writing, and cleanroom photolithography, have flexibility in design but require costly equipment [13][14]. Relatively cheaper techniques, such as anodization, electroplating, and electrospinning, are limited by the
  • ]. Therefore, there is still a need to develop simple and cost-effective fabrication methods applicable to a wide range of nano- and micropatterns and biomaterials. In our previous studies, we have shown how nanosphere lens lithography (NLL) can be used with a low-cost ultraviolet light-emitting diode (UV-LED
  • demonstrates a promising method for the creation of hierarchical nano-/microstructures on various polymers for nerve implant applications. Results and Discussion Fabrication and characterization of PU nanopillar and nanohole substrates We first fabricated nanopillar and nanohole arrays on medical-grade
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • applicable to all systems and setups. Results and Discussion Our approach consists of three main steps performed in a one-month timeframe. First, we calibrate the resistors employed in the fabrication of the reference sample using probe station measurements. Second, we use C-AFM imaging to obtain resistance
  • -AFM imaging and I–V curves measurement to define the conditions for calibrated measurements. Calibration sample design and fabrication The sample developed in this work consisted of a square fused silica substrate (11 mm wide, 2 mm thick), on which gold connection lines and pads were fabricated by
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • poorly water-soluble CUR. An effective submicron particle fabrication technique, namely co-precipitation–cross-linking–dissolution (CCD), has been established to produce biopolymer particles [24][25][26]. In this method, biopolymer particles are produced via co-precipitation, by simply mixing MnCl2 and
  • isothiocyanate (FITC) was purchased from Biochrom GmbH (Berlin, Germany). Fabrication of CUR-loaded human serum albumin microparticles The CUR-HSA-MPs were prepared by the CCD technique with some modifications to the adsorption method [29]. In brief, 20 mL of 0.25 M MnCl2 containing 50 mg/mL HSA solution were
  • washed three times by centrifugation with distilled water (6,000g for 10 min). The obtained HSA particles were resuspended in 10 mL PBS, pH 7.4, and stored in the dark at 4 °C for further use. The HSA-MPs as control particles were prepared following the same fabrication method but without CUR adsorption
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • piezoelectric membrane as a reference sample, which can reveal its contribution to the piezo/photodiode device. Methodology Sample fabrication The device type-I employed in this study is a piezo/photodiode device, fabricated following a previously reported procedure [32], where the piezoelectric material, lead
  • zirconate titanate (PZT), was integrated onto a silicon photodiode. The PZT layer was sandwiched between two lanthanum nickelate (LNO) electrodes and ultimately the backside of the silicon substate was etched to enhance the motion of the membrane. More detailed information on the fabrication and cross
  • × 2.8) and (1.4 × 1.2) mm2 labeled as A, B, C, and D, respectively. In the process of fabrication, a 100 nm thick layer of LNO as the bottom electrode was first deposited, using pulsed laser deposition (PLD) technique, on a single crystal silicon wafer. Then, an 850 nm lead barium zirconia titanate
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

A visible-light photodetector based on heterojunctions between CuO nanoparticles and ZnO nanorods

  • Doan Nhat Giang,
  • Nhat Minh Nguyen,
  • Duc Anh Ngo,
  • Thanh Trang Tran,
  • Le Thai Duy,
  • Cong Khanh Tran,
  • Thi Thanh Van Tran,
  • Phan Phuong Ha La and
  • Vinh Quang Dang

Beilstein J. Nanotechnol. 2023, 14, 1018–1027, doi:10.3762/bjnano.14.84

Graphical Abstract
  • ., temperature, concentrations of chemicals, and annealing time). ZnO nanorods and nanowires have attracted great interest in photodetectors because their chemical and physical properties are exceptional for electronics applications, and their fabrication strategies are more facile than those of other structures
  • wavelengths (464, 532, and 640 nm), and an excellent sensitivity value of 203.4% for blue-light (464 nm) exposure. Therefore, the photodetector based on CuO NPs/ZnO NRs can enable research into broadband optoelectronic devices with simple and low-cost fabrication techniques. The structure can be extensively
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • . Metal bis(acetylacetonate) complexes are of interest for many thin film fabrication techniques (e.g., chemical vapor deposition [9], atomic layer epitaxy [10], or atomic layer etching [11]) and as precursors for carbon materials, such as carbon nanotubes and carbon onion particles [12], or metal oxide
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • fabrication; the resulting composition seems to arise from Si and P supersaturation levels [3][4]. The formation of precipitates in supersaturated silicon has also been considered as a possible mechanism involved in the deactivation of dopants [5][6][7]. To date, Si3P4 compounds have not been experimentally
  • can be considered satisfactory. Reports on the fabrication of 3:4 binary compounds with defective zinc blende structure are scarce [36][37]; to the best of the authors’ knowledge, a comparison of calculated vibrational spectra with experimental ones has never been undertaken. IR spectra of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • fabrication of MOF/graphene-based composites. Figure 5 was reproduced from [41], R. Kumar et al., “Remarkable Improvement in the Mechanical Properties and CO2 Uptake of MOFs Brought About by Covalent Linking to Graphene”, Angew. Chem., Int. Ed., with permission from John Wiley and Sons. Copyright © 2016 WILEY
PDF
Album
Review
Published 20 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • , detection, and eradication of cancer cells and biomarkers, with great potential in theranostic applications. Despite these advantages, the design and fabrication of targeted NPs for cancer therapy is still very challenging regarding biocompatibility, pharmacokinetics, in vivo targeting efficacy, and cost
  • -effectiveness. The optimization of these variables depends on NP design parameters such as size, shape, charge, composition, preparation method, and surface decorating moiety. The most crucial aspect in the future development of ACNPs will be the design and fabrication of multiple targeting moieties with the
PDF
Album
Review
Published 04 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • to the enhanced number of active sites achieved through the transition from the bulk state to the nanomaterial form. The optimal condition for the fabrication of 2D Ni(Im)2 was determined to be the utilization of 5 mL of NH4OH. Co-based MOFs nanomaterials Cobalt materials provide a diversity of
  • converting individual MOFs into MOF-derived carbon-support nanomaterials. Another issue is the durability of the working electrodes. Many studies have employed drop casting and the use of binders to affix MOFs onto the substrate for electrode fabrication. This approach presents drawbacks such as reduced
PDF
Album
Review
Published 31 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible
  • and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in
  • -assembly; solid/liquid interface; two-dimensional networks; Introduction The fabrication of ordered nanostructures using the concept of nanoarchitectonics [1][2][3][4] for various applications such as nanomachines, nanoelectronics, catalysis, and nanopatterning remains challenging [5][6][7]. Design and
PDF
Album
Review
Published 23 Aug 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • and disadvantages; for brevity, we encourage readers to access previous review papers that cover in depth light-based fabrication techniques [41][42][43]. SLA and DLP are by far the most common techniques for fabricating microneedles, with approximately eight times as many publications as publications
  • volumetric throughput between DLP or SLA printers and 2PP instruments. In conjunction with new hardware, there have also been incremental changes in 2PP fabrication strategies. These strategies are based on voxel (volumetric pixel in x,y,z) control. Current 2PP software can be utilized to classify parts of
  • internal photoresin. A third fabrication strategy leverages the combination of DLP and 2PP fabrication techniques. Sarker et al. [56] recently demonstrated the strength of combining fabrication techniques for microneedles. They used DLP to fabricate the bulky base and 2PP for microneedle fabrication, akin
PDF
Album
Perspective
Published 15 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • new research techniques and methodologies that enabled detailed investigation of biological archetypes. High-detail microscopy, analysis systems, and novel simulation tools helped to decode the secrets of nature, while new fabrication techniques helped to transfer these findings into technical
  • were performed and the mandibles were analysed using (cryo-) scanning electron microscopy, indicating that a fluid substance covers the medial surface of the mandibles reducing propolis adhesion. Weiser et al. [13] take biomimetics into industrial production with their paper “Roll-to-roll fabrication
  • tune and then scale up the fabrication of tools to handle nanofibres in industrial processes. Fibre–surface interactions are also the main theme in “Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)” by Cobos and Higham [15]. In the excitement
PDF
Album
Editorial
Published 03 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • electrospinning were controlled at 25 °C and 40% RH, respectively. Fabrication of wearable flexible nanoscale heart sound sensors Figure 2 illustrates the process of creating a wearable, flexible nanoscale heart sound sensor with a sandwich structure. First, a rectangular composite nanofilm measuring 4.5 cm in
PDF
Album
Full Research Paper
Published 31 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • fabrication, resulting in a low aspect ratio of the achieved features. Because 3D printing enables the creation and testing of objects in short periods of time, it provides a new tool for constructing microfluidic devices. This has led to fast and dynamic developments in chemical synthesis and analytical
  • systems at low cost [24][25][26]. There are two techniques for producing 3D-printed microfluidic devices. In the first approach, monolithic microfluidic devices are 3D printed [27][28]. Although this one-step process offers the benefits of quick development and ease of fabrication, reducing the channel
  • , TESCAN). A UV–vis spectrometer (Agilent 8453, Agilent, USA) and a micro-Raman spectrometer (NS200, Nanoscope System, Republic of Korea) were used to record the absorption spectra and Raman spectra, respectively. Fabrication of the droplet-based microfluidic device The fabrication process of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • structures. The authors thank Marsha Ensor for her contribution. This report is based on the following: Hancock, M. L. The Fabrication and Characterization of Metal Oxide Nanoparticles Employed in Environmental Toxicity and Polymeric Nanocomposite Applications. Doctoral Dissertation, University of Kentucky
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • from Binh Dinh province, Vietnam. Fabrication of activated carbon from banana peel A procedure similar to our previous work [33] has been used to prepare carbon materials from banana peels. An appropriate amount of banana peels was dried at 80 °C overnight in a vacuum oven and ground into small pieces
  • ) water, before being dried in a vacuum oven at 110 °C for 12 h. The product was further heated under air at 300 °C for 3 h. The activated carbon was obtained after washing with 2 M HCL and DI water. It was dried under vacuum and denoted as BC-800. In situ fabrication of Ge/C-iM750 composite material A
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • properties in terms of morphology, size, type, and functionalization have been reported [2]. Controlling the properties of nanotubes is essential for various applications. In a recent study on the production of CNT-based conductive textiles, the fabrication of conductive wool required the utilization of
PDF
Album
Full Research Paper
Published 21 Jun 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • nanotechnology, which pioneered the science at that length scale. Such methodologies were also touched upon in the bottom-up fabrication of materials using supramolecular chemistry and other methods [7][8]. Nanoarchitectonics encompasses these methods and integrates them into a broader field of research
  • that include the word “nanoarchitectonics” in the title, one would appreciate that these manuscripts are not only coming from basic fields of research such as material fabrication [12][13], structural control [14][15], elucidation of physical phenomena [16][17], and basic bio-related sciences [18][19
PDF
Album
Editorial
Published 19 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • expertise. It is therefore necessary to develop a technology that can detect pesticides quickly, easily, and economically. With electrochemical detection techniques, a wide range of pesticides can be detected by the fabrication of simple, cost-effective, rapid, and high-throughput portable devices [8]. The
  • collected after centrifugation. To obtain the GQDs, the final black suspension was filtered through a 0.22 µm syringe filter. Fabrication of the electrochemical sensor A mirror-like surface was first achieved on the bare GCE by polishing it with 0.3 and 0.05 μm alumina powder. In the next step the GCE was
  • malathion detection (Figure 10). Conclusion Graphene quantum dots (size range 5 to 40 nm) were chemically synthesized by using glucose as a precursor in a hydrothermal method. This paper describes the fabrication of an electrochemical nanosensor by modifying a bare glassy carbon electrode with GQDs. The
PDF
Album
Full Research Paper
Published 09 Jun 2023
Other Beilstein-Institut Open Science Activities