Search results

Search for "STEM" in Full Text gives 287 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • essential to human being, previously published work [26] showed that Zn can greatly improve cell functionality by enhancing osteoblast proliferation and mineralization and promoting mesenchymal stem cell osteogenic differentiation. Meanwhile, its anti-inflammatory properties have also drawn wide attention
PDF
Album
Full Research Paper
Published 14 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • of approximately 100 nm, which is slightly larger than the thickness of pure CoAl LDH reported in the literature [33]. The morphology and structure of the as-prepared NPLs-2.5-800 sample are observed by TEM (Figure 3A–C) and STEM (Figure 3D). As shown in Figure 3A, well-dispersed Co nanoparticles on
  • containing magnetic Co nanoparticles (CoAl2O4 phase) and porous carbon layer by partial reduction Co2+ ions in the lattice of LDH with carbon during carbonization process at 800 °C [15][34]. The Z-contrast image in HAADF-STEM image correlates strongly with the atomic mass. Metallic cobalt is a heavier
  • element and thus appears as the bright contrast, whereas the mesopores generated by the consumption of surface carbon are observed as darker contrasting areas in Figure 3D. From the HAADF-STEM image in Figure S5A of Supporting Information File 1, and the corresponding elemental line profiles in Figure S5B
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • of the surface of biomaterials. Surface topographical patterns significantly affect cell adhesion, spreading, morphology, proliferation, and differentiation [1][2][3][4][5]. Surfaces with specific micro/nanopatterns have been developed in order to reduce platelet response [6], to regulate stem cell
  • either gelatin or collagen substrates. However, grooves with a width of 100 µm width did not influence osteoblast cell orientation [44]. Good cell alignment in collagen or gelatin grooves has also been reported for NIH-3T3 cells [36], vascular smooth muscle cells [46], and dental pulp stem cells [56]. In
  • attachment of other cell types to other patterned surface, an improvement in cell attachment, due to patterning, depends on several different conditions. An increased tendency to attach to a patterned surface compared to a planar surface has been seen with human dental pulp-derived stem cells on tantalum
PDF
Album
Full Research Paper
Published 11 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • and densely packed MoS2 NSs grown on SiO2/Si substrates can be seen from the low-magnification scanning TEM (STEM) image (Figure 4a). The STEM image (Figure 4b) demonstrates that the MoS2 NSs growth occurred perpendicular to the substrate. The height of the NSs ranges from 50 to 70 nm. The
  • nm Mo film at 850 °C on SiO2/Si substrates: (a) HAADF-STEM image at low magnification with different observed materials layers marked; (b) TEM image at the interface between the MoS2 NSs and the Pt layer; (c) higher magnification of layer A showing edge dislocation (marked with “T”) in the MoS2
  • layers; (d) high-magnification HAADF-STEM image at the interface between “A” and “B” from panel (a); (e–g) FFT analysis over the area marked by the dotted squares in panel (d), from top to bottom respectively. Photographs of (a) wet chemically transferred MoS2 sample on the FTO/glass substrate, the FTO
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • intensity on the map [31]. The same principle is used with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) [32][33][34]. This technique based on inelastic scattering measures the energy losses of the electrons. At the hot spots, the plasmon excitation results in
PDF
Album
Full Research Paper
Published 23 May 2018

Electronic conduction during the formation stages of a single-molecule junction

  • Atindra Nath Pal,
  • Tal Klein,
  • Ayelet Vilan and
  • Oren Tal

Beilstein J. Nanotechnol. 2018, 9, 1471–1477, doi:10.3762/bjnano.9.138

Graphical Abstract
  • conductance contribution of less than 0.5 G0. Note that this contribution is lower than estimated by the step height. Although the difference can stem from another conduction channel via the molecular junction that does not interact with vibration modes, one should bear in mind that both analysis methods
  • by two main channels, each with lower conductance contribution than 1 G0. The deviation from the trivial channel distribution can stem from distorted local electronic structure at the single-atom junction due to the presence of the molecular bridge or other nearby adsorbed molecules, such that the
PDF
Album
Full Research Paper
Published 17 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • incidental NMs; additionally, engineered NMs can be purposely designed to exploit novel features that stem from their small size. It is known that metal NPs may be spontaneously generated from synthetic objects, which implies that humans have long been in direct contact with synthetic NMs and that macroscale
  • with the extracellular matrix (ECM) within the stem cells includes influential stem cell behavior through sources of passive mechanical force. A wide structural protein spectrum and polysaccharides of different length scales with dominating nanometer-sized collagen fibrils strands of 35–60 nm diameter
PDF
Album
Review
Published 03 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • both vertebrates and invertebrates. Flora will be broken down into herbaceous and woody plants. Herbaceous plants die down to the ground each year and regrow (perennials, annuals, and biennials), whereas woody plants refer to trees and plants that maintain a persistent woody stem above ground year
  • [20] detail these phases of healing in a soft tissue wound injury, which are shown in Figure 4A [54]. Immediately after an injury to vertebrate soft tissue, platelets gather at the site of the wound to stem the loss of blood while also preventing foreign and potentially harmful material from entering
  • component similar to the hard tissue response. In soft tissue, the short-term response involves clotting of the wound to stem blood flow. Over a longer period, the cellular response leads to remodeling of the epithelial (skin) tissue at the wound site. Stem cell response – In the discussion between
PDF
Album
Review
Published 19 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and
  • . Collected spores were diluted 10–50 times with 8.5 g/L NaCl aqueous solution, and then counted. STEM images of modified titania samples: (a) Ag/TiO2(ST01), (b) Au/TiO2(ST01), (c) Ag/TiO2(ST41) and (d) Au/TiO2(ST41). XPS spectra for bare (top left) and gold-modified (bottom left) TiO2(ST01) sample, and
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles

  • Fuat Topuz and
  • Tamer Uyar

Beilstein J. Nanotechnol. 2018, 9, 693–703, doi:10.3762/bjnano.9.64

Graphical Abstract
  • types (i.e., β-CD, HP-γ-CD and HP-β-CD). By varying the concentrations of additives and CD-type, MSNs in various shapes, such as spherical, aggregate, bean-like and faceted were generated (Figure 1). The particles were characterized in terms of morphology by SEM, TEM and STEM, the surface area by BET
  • HP groups. These molecules do not aggregate like β-CD, which might affect the particle formation, and eventually lead to the particles in different shapes and pore structures. For detailed analysis of the faceted particles, TEM, STEM and EDX analyses were performed. Figure 3f shows the TEM images of
  • ). Figure 5 shows the TEM and STEM images of the particles. Under all conditions, MSNs were obtained where the particle shape transformed from single particles to aggregates depending on the CD content used. At low HP-γ-CD concentrations, mixed particles with spherical and faceted shape were formed. However
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM)

  • Aaron Kobler and
  • Christian Kübel

Beilstein J. Nanotechnol. 2018, 9, 602–607, doi:10.3762/bjnano.9.56

Graphical Abstract
  • . Keywords: ACOM-TEM; 3D reconstruction; in situ testing; quantitative crystallographic analysis; STEM; Findings For the study of nanostructured material with feature sizes <100 nm, transmission electron microscopy (TEM) is the method of choice due to its high spatial resolution [1][2][3][4]. Even though
PDF
Album
Letter
Published 15 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), scanning transmission microscopy (STEM) and the Brunauer–Emmett–Teller (BET) surface area method, whereas the photocatalytic activity was evaluated by the degradation of phenol in aqueous solution under visible light irradiation (λ > 420
  • 2 h (heating rate 2 °C/min). Various molar ratios of ILs to TBOT were selected as listed in Table 1. Sample characterization The morphology and size distribution of the TiO2 powders were observed using a Jeol SEM microscope operated at 12 kV and Cs-corrected STEM (high angle annular darkfield, HAADF
PDF
Album
Full Research Paper
Published 14 Feb 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • , Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania, Laser Research Centre, Vilnius University, Sauletekio al. 9, corp. 3, LT-10222 Vilnius, Lithuania 10.3762/bjnano.9.32 Abstract We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the
  • ; mesenchymal stem cells; quantum dots; spheroids; 3D cell culture; Introduction The recent progress in the development of nanoscale agents opens up new perspectives for targeted drug delivery in cancer diagnostics, imaging and therapy. However, once administered into the body, nanoparticles (NPs) are rapidly
  • and their immune privileged nature, mesenchymal stem cells (MSCs) can be used as a delivery vehicle for therapeutic and imaging agents, such as drug-conjugated NPs [3][4]. MSCs are adult stem cells that can be isolated from various organs, including brain, liver, kidney, lung, bone marrow, muscle
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • . HADF-STEM and spatially-resolved EDX mapping (Figure 2) demonstrate that the surface of BN NPs is densely populated with Ag NPs. Thorough structural characterization of individual Ag NPs revealed their fine structure. The HRTEM images of individual Ag NPs are depicted in Figure 2c and 2f. The particles
  • means of high-resolution transmission electron microscopy (HRTEM), high-angular dark field scanning TEM (HADF-STEM) imaging and energy-dispersive X-ray spectroscopy (EDX) mapping using a JEM-2100 microscope (JEOL) equipped with an energy-dispersive X-ray spectrometer (Oxford Instruments) and a STEM
  • ) and UV decomposition of AgNO3 (g) together with the corresponding low-magnification TEM images (b, e, h) and the corresponding high-resolution TEM images (c, f, i). HADF-STEM (a, d) images together with the corresponding spatially-resolved EDX maps (b, e) of BN/Ag HNMs produced via CVD (a, b, c) and
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • micrograph (BF-STEM) of the central part of this line. Evidently, for obtaining a compact, fully percolated line of crystals the dose must be increased further, but thin electron-transparent lines facilitate TEM observation. From the BF-STEM imaging, the crystalline nature of the nanoparticles is made
  • particles. Additionally, selective area electron diffraction (SAED) on this area clearly shows a diffraction pattern, confirming a crystalline deposit (Figure 3d) with diffraction rings matching the pattern of fcc silver as illustrated by the green rings. In the dark field (DF) STEM images in Figure 4 the
  • line width of the FEB induced deposit was measured to 1 ± 0.1 µm by contrast to the eye. Figure 4b and 4c depict high magnification DF-STEM image of the top edge of the line. Particle numbers and sizes decrease towards the outer part of the line where the number of impinging electrons decreases. The
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • ) [40]. Locally ordered collagen type-I gels, obtained by solvent evaporation, could induce an aligned 2D growth of human mesenchymal stem cells as well as their guided differentiation into bone tissues within two weeks in osteogenic media [86]. The concentrated (ca. 90 mg/mL) collagen type-I film
  • stem cells [7][98]. Investigations by the Hegmann group have shown that bioengineered LCE scaffolds can be used to control mechanical response, growth direction, and proliferation rate of the seeded myoblasts and neuroblastomers. Porous LCE matrices in smectic-A with interdigitated cholesterol moieties
  • local alignments, which resulted in directed and oriented growth of human mesenchymal stem cells and their osteogenic differentiation [105]. Additionally, biomineralization-mimicking hybrid materials, using chitin nanowhisker gel matrices in a nematic phase as templates for CaCO3 crystallization, have
PDF
Album
Review
Published 18 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • TEM with a LaB6 cathode operated at 120 kV. High resolution transmission electron microscopy (HRTEM) was done using an aberration corrected Titan 80-300 (FEI, Eindhoven, The Netherlands) with field emission gun, operated at 300 kV. Scanning transmission electron microscopy (STEM) and chemical analysis
  • with optical microscopy. Moreover, the diameter of the AuNPs in the TS_Au5.0 materials is mainly between 7–13 nm, but smaller Au particles are also present. Furthermore, bright field TEM images of TS_Au5.0 show a homogeneous AuNP distribution on the TNP. Dark field STEM images of the HM show a better
  • samples. The slight differences between the AuNP distribution in TEM and STEM may be due to variation between sample areas. Both the AuNPs and the TNPs were further analyzed via HRTEM and fast Fourier transformation (FFT) analysis of the observed lattice fringes along with further EDXS experiments. Figure
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • -benzoquinone, used as hydroxyl and superoxide scavengers, were used at concentrations of 1 and 10 mM, respectively. Characterization Transmission electron microscopy (TEM) investigations were performed with a JEOL ARM 200F-Cold FEG TEM/STEM (point resolution 0.19 nm in TEM mode and 0.078 nm in STEM mode
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • ). Once the deposition rate was optimized and the samples were produced, high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed that the crystallites in the planar deposits were considerably larger than those in NPs (compare Figure 1f to Figure 1c). Although both
  • independent of the direction of EDX scanning and the relative position of the sample to the EDX detector. We note that very similar composition values and gradients were found by STEM EDX performed on long straight (uniform diameter) sections of NPs deposited on silicon nitride TEM grids in our previous study
  • [65]. More accurate compositional quantification could probably be achieved by performing atom probe tomography or thickness-corrected STEM electron energy loss spectroscopy (EELS). Planar Au nanostructures The main goal here was to elucidate the effects of each experimental parameter on the
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

  • Rumen G. Nikov,
  • Anna Og. Dikovska,
  • Nikolay N. Nedyalkov,
  • Georgi V. Avdeev and
  • Petar A. Atanasov

Beilstein J. Nanotechnol. 2017, 8, 2438–2445, doi:10.3762/bjnano.8.242

Graphical Abstract
  • pulses) in order to investigate the structure of the material ablated. The TEM and selected area electron diffraction (SAED) images were taken on a HR scanning transmission electron microscope (STEM) (JEOL JEM 2100) to reveal the morphology and crystallinity of the as-deposited samples. For STEM
PDF
Album
Full Research Paper
Published 17 Nov 2017

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • a scanning transmission electron microscopy (STEM) detector (described in detail below). The water layer covering the cells was carefully thinned until it was sufficiently thin to allow for the detection of single NPs in a cell with the STEM detector located under the sample. In order to easier
  • min, rinsing three times with PBS supplemented with 1% BSA, and storage in this buffer at 4 °C until electron microscopic investigation. Wet ESEM-STEM An electron beam with an energy of 30 kV, a spot size of 1 nm, a probe current of 600 pA, and working distances between 6.0 and 6.4 mm were used. The
  • sample, an overview ESEM-STEM image was recorded showing the whole membrane window area with all cells. Consequently, overview images were recorded from individual cells or cell groups at a higher magnification. To discern NPs on the plasma membrane, the magnification was set to 25,000× or 50,000×, and
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • analyze the chemical composition of the cobalt nanospheres by electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) mode and their local magnetic properties by electron holography in a transmission electron microscope (TEM), the specimens were prepared for TEM
  • grown at the apex of the cantilever, following the same procedure as described above. Figure 3b,c displays the SEM micrographs of the two cobalt nanospheres studied by STEM-EELS and electron holography, once grown at the apex of cantilevers already attached to the TEM grid. The morphological and
  • compositional properties of the cobalt nanospheres grown by FEBID have been confirmed by local chemical mapping of selected nanospheres of diameters 110 nm (see Figure 4b) and 90 nm (see Supporting Information File 1) performed by STEM-EELS. These quantitative maps reveal, first of all, that the deposits are
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • behavior in biological systems and biocompatibility/nanotoxicity is still limited. The study of Cascales et al. showed that ultrasmall Yb:Er:NaGd(WO4)2 UCNPs could be successfully covered with Tween 80 and are internalized by human mesenchymal stem cells without triggering their metabolic activity, but
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), FTIR
PDF
Album
Full Research Paper
Published 22 Aug 2017
Other Beilstein-Institut Open Science Activities