Search results

Search for "XPS" in Full Text gives 384 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • the CCN surface, resulting in close contact (Figure 4c,d). X-ray photoelectron spectroscopy (XPS) was utilized to study the surface elemental composition of the representative composite photocatalyst CISCCN3. The survey XPS spectrum of Figure 5a shows that the CISCCN3 composite is mostly composed of C
  • photoelectron peak for In 3d (Figure 5e) exhibits two peaks, corresponding to In 3d5/2 and In 3d3/2 [40]. Moreover, the S 2p peak splitting of 161.4 eV and 162.6 eV, a split energy with 1.2 eV, represents the S2− in the nanocomposite sample [28]. Consequently, from the XPS results, it can be concluded that the
  • CdIn2S4 has been successfully deposited on CCN nanosheets through the heterojunction formation, promoting the transfer of photo-induced charge between these two materials. No other peaks appeared in the XPS spectrum of CISCCN, inferring that impurities have not been introduced during the composite
PDF
Album
Full Research Paper
Published 18 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • measurements of the chemical composition of the fabricated SNIFs by using X-ray photoelectron spectroscopy (XPS) and their optical properties by using UV–vis spectroscopy. Finally, we describe the SERS performance of SNIFs in the measurements of para-mercaptoaniline (pMA) molecules. Results and Discussion
  • . Chemical composition of the silver nanoisland films The chemical composition of the PLD-deposited silver nanoisland films was investigated by using XPS spectroscopy. The results of XPS measurements are shown in Figure 4. The XPS spectrum registered over a wide range of binding energy indicates that in
  • – 368.16 eV, FWHM 0.96 eV. This is also confirmed by the spectra of the Auger band, which is typical for metallic silver [27]. The metallic form of silver has also been confirmed by comparing the recorded spectra of the sample with the spectra recorded for Ag foil with 99.95% purity. XPS studies therefore
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • results of XRD (Figure 2). X-ray photoelectron spectroscopy The XPS spectra of the as-prepared catalysts are given in Figure 4. The elements Mn, Cu, Fe, C, and O were detected in the XPS full-scan spectrum of Figure 4A. For the Mn 2p spectrum of 4% MnO2–CuO–Fe2O3/CNTs (Figure 4B), the binding energies at
  • preparation process, which leads to an inactivation of the metal equipment. The generation mechanism for the MnO2–CuO–Fe2O3/CNTs catalyst A reaction mechanism of the synthesis of the MnO2–CuO–Fe2O3/CNTs catalystis proposed. Based on the results of XRD and XPS, active components of MnO2, CuO, and Fe2O3 are
  • -programmed reduction by H2 (H2-TPR) was assessed by using a custom-built TCD apparatus. Before the H2-TPR test, 50 mg catalyst was firstly purged in N2 at 200 °C for 1.5 h. The test was carried out in N2 (containing 6% H2) with a heating rate of 10 °C/min. X-ray photoelectron spectroscopy (XPS) was carried
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • reported using the same color scales [55]. For chemical analysis of the obtained thin films, Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were performed. For the FTIR analysis, a Bruker IFS 66v/S was adopted. For each spectrum, 1000 scans were recorded in transmission mode
  • with a resolution of 4 cm−1 between 400 cm−1 and 4000 cm−1. All spectra were baseline corrected and normalized to the film thickness. Surface chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). Analyses were performed with a Scanning XPS Microprobe (PHI 5000 Versa Probe II
  • gather information about the chemical composition and bonding of the Zn-alkoxide layers, FTIR and XPS measurements were performed. The oxidative environment of the oxygen plasma during the deposition causes the formation of CO2 and water eventually leading to the removal of all the carbon functionalities
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • quantitative XPS results indicating that the Au content was 5.7 wt % in these samples). A monomodal distribution of Au nanoparticles is obtained with average diameter of about 4 nm. The gold nanoparticles appear very close one to another (typically 10 nm apart), which will affect the gas sensing mechanism, as
  • nucleation centers for the anchoring the Au NPs) was conducted using XPS. The chemical modification caused by the plasma treatment results in the presence of hydroxy, carbonyl and carboxyl groups [36]. Furthermore, Au nucleation centers occur mainly in the proximity of oxygenated defects created during the
  • plasma treatment [37]. These results are summarized in Supporting Information File 1, Figure S4 and Table S1. The presence of thiols attached to Au NPs was further confirmed by XPS analysis. Figure 4a shows the comparison of the XPS survey spectra recorded on the samples and a reference (gold on CNTs
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • -RGO@MWCNT to 1.04 in S-3D-RGO@MWCNT (Figure 4b), implying that the defects in 3D-RGO@MWCNT were filled or occupied by sulfur [3]. This is also supported by the C 1s XPS pattern of 3D-RGO@MWCNT, in which a C–S bonding state (285.4 eV) is observed (Figure 4d). The O–C=O (288.8 eV), C=O (287.2 eV) and C
  • (SmartLab, Rigaku Corporation) with Cu Ka radiation. X-ray photoelectron spectroscopy (XPS, Shimadzy Axis Ultra) was applied to investigate the chemical valence states and compositions of the sample. Scanning electron microscopy (SEM, Hitachi S4800) and high-resolution transmission electron microscopy
  • @MWCNT; (c) TGA of S-3D-RGO@MWCNT; (d) The XPS survey spectrum of S-3D-RGO@MWCNT composite; high-resolution XPS spectra of (e) C 1s, (f) S 2p. CV curves of the S-3D-RGO@MWCNT cathode at 0.1 mV·s−1 in the first four cycles. (a) CV measurement of the S-3D-RGO@MWCNT cathode (1st, 50th, 100th, 150th and
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • after the hydrogenation process were performed by using X-ray photoemission spectroscopy (XPS). The XPS measurements were performed using an Argus (Omicron NanoTechnology) X-ray photoelectron spectrometer. The photoelectrons were excited by a Mg Kα X-ray source. The X-ray anode was operated at 15 keV
  • and 300 W. XPS measurements were performed at room temperature under ultrahigh-vacuum conditions, with pressures below 1.1 × 10−8 mbar. Data analysis was performed with the CASA XPS software package using Shirley background subtraction and a least-squares Gaussian–Lorentzian curve fitting algorithm
  • is in its highly oxidized form [42]. Bands characteristic for BiVO4 were not detected for the samples covered by the polymer, probably due to the small amount of material and structure distortions. However, the presence of Bi and V was confirmed through XPS. The morphology of the electrodes was
PDF
Album
Full Research Paper
Published 15 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • method used to grow PtSe2 nanosheets followed by thermal annealing. The SEM and TEM analysis confirms the formation of PtSe2 nanosheets. Furthermore, XRD, Raman, XPS and SAED patterns were used to analyze the crystal structure and to confirm the formation of the PtSe2 phase. The temperature-dependent
  • -synthesized PtSe2 sample. The X-ray photoelectron spectroscopy (XPS) spectra of the Pt 4f and Se 3d regions acquired on a PtSe2 nanosheet sample were carried out on a film deposited on the Si substrate. The Figure 4a represents the fitted spectrum for Pt 4f7/2 and Pt 4f5/2 with binding energy 72.55 eV and
  • diffraction (SAED) pattern for the as-synthesized PtSe2 nanosheets. (a) Deconvoluted XPS spectra for Pt and (b) Se elements. (a) AFM image and (b) AFM height profile plot for a PtSe2 nanosheet. Temperature-dependent Raman spectra analysis for PtSe2 nanosheets for the (a) Eg mode and the (b) A1g mode as a
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • by X-ray photoelectron spectroscopy (XPS) analysis, which is carried out to study the surface composition and the interactions and valence states of the elements present in the hybrid materials. The full XPS survey spectrum of the GCN-5 hybrid material reveals the presence of C, N and O, while no
  • the breaking of most C–N bonds due to formation of NFs and QDs. Figure 3d shows a high-resolution XPS spectrum of O 1s present in the GCN-5 hybrid. The peaks at binding energies of 531.7 and 532.8 eV are attributed to carbonyl and epoxy C–O groups of rGO, respectively, which are still present in the
  • rGO [34]. The XPS peaks of g-C3N4 and rGO are shifted slightly to higher and lower binding energies in the GCN-5 hybrid, respectively, indicating possible charge transfer between g-C3N4 and rGO in the heterostructure. Hence, the XPS results confirm the successful preparation of the composite and the
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • containing thymine or titanium oxide. Overall, a more in-depth investigation of the structure of the Ti-thymine films should be performed. No sign of crystallinity was observed for Ti-adenine and Ti-uracil by AFM or XRD. We used XPS as a qualitative investigation of the chemical state in the thin films prior
  • to and after water exposure. The carbon peak of the as-deposited films was used to confirm that the structure of the bases was maintained during deposition. Carbon peak splitting in all three bases is similar to the previously reported XPS results on pure bases in powder form (Figure 11) [25][26
  • energies of O–Ti–N-type bonding [28]. Upon water exposure, titanium in the as-deposited films is observed only as TiO2. This is evident from the 458.5 eV binding energy for the 2p3/2 peak, in addition to the 5.7 eV spin-orbit splitting. Furthermore, the characteristic TiO2 XPS satellite peak is observed at
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • , Bruker D8) with Cu Kα radiation. Chemical composition and valence state of the products were studied using X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). The surface morphology of the samples was characterized using a scanning electron microscope (SEM, Nova nanoSEM 450) equipped with
  • changes in chemical state of the elements, XPS measurements are performed for the as-spun, as-dealloyed, and as-synthesized Ni(OH)2 specimens. Figure 4a shows that the XPS spectra over a wide energy region exhibit the main peaks of Zr 3d, Ti 2p, O 1s, and C 1s for the as-spun Ni-Zr-Ti alloy, while large
  • -magnification TEM images; (d) HRTEM image; (e) SAED pattern of Ni(OH)2 nanopetals. XPS spectra of the elements of the as-spun ribbon, as-dealloyed ribbon and as-synthesized electrode: (a) survey spectrum, (b) Ti 2p, (c) Zr 3d, (d) Ni 2p and (e) O 1s. (a) CV curves of the Ni(OH)2/Ni-NF/MG-2, Ni(OH)2/Ni-NF/MG-5
PDF
Album
Full Research Paper
Published 25 Jan 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • the crystallinity, atomic concentration profile and optical parameters of ≈35 nm-thick silver and gold layers deposited on glass substrates with 2 nm-thick tellurium or selenium interlayers. Our study, based on X-ray reflectometry (XRR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS
  • films have a sheet resistance approximately twice higher than similar structures deposited on top of Ti or Ni sublayers. Ellipsometric and XPS measurements by Wróbel et al. [25] have shown that this increase in ohmic losses is most likely a result of Ge atoms segregating towards the surface of the
  • of developed voids, which is linked with the density profile, may strongly influence the segregation characteristics. Here, we report on XRD and XRR measurements to investigate the crystallinity of Ag and Au nanolayers deposited on SiO2 substrates with 2 nm-thick Te or Se interlayers. XPS allowed us
PDF
Album
Full Research Paper
Published 21 Jan 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • larger content of the ligand (according to XPS, 27% O and 40% C in ink0 vs 22% O and 37% C in ink1) or/and probably some structural and compositional changes of the organic matrix initiated through the heat treatment of ink1. The elemental composition of the CZTS NC phase was proved by a survey XPS
  • were prepared in aqueous solutions by the reaction of a mixture of mercaptoacetate (MA) complexes of Cu(II), Sn(II), and Zn(II) with sodium sulfide and a subsequent optional heat treatment at about 95 °C. An XPS study reported in [21] showed all the elements of CZTS to be present in the expected
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • ]. Importantly, the absence of carbonyl stretching vibrations around 1950–2190 cm−1 rules out any remnants of molecular precursor Ru3(CO)12 (Figure 7b [52][62]). X-ray photoelectron spectroscopy (XPS, Figure 8) is used to differentiate between the oxidation states of ruthenium at its surface and in its inner
  • (“bulk”). The overview XPS spectrum of an as-prepared nanostructured sample features only Ru, O and C (Figure 8a) from the Ru/C layer, whereas the Al2O3 substrate is completely covered and reveals no Al signal. Deconvolution of the Ru 3d region, which is superimposed with C 1s (Figure 8b), reveals two
  • ruthenium catalyst as prepared is present as oxidized Ru(IV). This observation is consistent with the XPS analyses presented above. The consecutive cycles yield a rather constant hysteresis area, which indicates a low loss of material in electrochemical conditions. This relative stability of our nanoporous
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • chemical composition of the iron oxide decorated carbon nanotube samples were investigated employing transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The differently decorated CNT samples were used to make gas sensors for detecting nitrogen dioxide. A
  • absorbed acetic acid [28]. Finally, the powder was calcined at 450 °C during either 15 or 30 minutes. In this way the effect of the calcination time on the decoration process was also evaluated. The chemical composition of the decorated CNTs were measured by X-ray photoelectron spectroscopy (XPS) using a
  • order to ensure the homogeneity. The chemical composition was then evaluated by using CASA XPS software. TEM images were collected using a JEOL 1011 transmission electron microscope operating at 100 kV. The samples were dispersed in ethanol and a drop of resultant suspension was poured on carbon-coated
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • crystallographic texture, scanning electron microscopy (SEM, JSM-5900 LV, JEOV) for micro-morphology, transmission electron microscopy (TEM, Tecnai G2 F20 S-TWIN) for microstructure, UV–vis diffuse reflectance spectroscopy (UV2100) for photoabsorption properties, X-ray photoelectron spectroscopy (XPS, Escalab
  • phosphorus species by contact with air [21][33][34][35]. The binding energy of 129.6 eV is slightly lower than that of elemental P (130.0 eV), which suggests the P is partially negatively charged (Pδ−) [36]. Given the probing depth of 3 nm for XPS measurements, the NiCoP amorphous phase in NixCoyP/TNAs
  • presents a molar mole ratio of 10.82: 2.21:2.82, giving x = 3.84 and y = 0.78. According to the XPS results, polyvalent interactions of Ni, Co and P heteroatoms are suggested. In this complex material, both Ni and Co carry a partially positive charge (δ+) whereas P carries a partially negative charge (δ
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements
  • electrical properties of the ZTOst standard sample. Yet, the simultaneous substitutional fluorine doping of SnO2 must also be considered, as will be discussed in the paragraph when XRD and XPS analyses are presented. Considering the most intense peak (101) of the dominant phase SnO2, the crystallite size (D
  • /DZnEt2, while keeping the sensitizer flow constant. In order to estimate the elemental composition for the Zn/F-doped SnO2 powders, EDX and XPS measurements were conducted; the results are presented in Table 1. In the XPS measurements, the peaks centered around 487 eV, 494 eV, 531.43 eV, 684 eV, 1022 eV
PDF
Album
Full Research Paper
Published 02 Jan 2019

A novel polyhedral oligomeric silsesquioxane-modified layered double hydroxide: preparation, characterization and properties

  • Xianwei Zhang,
  • Zhongzhu Ma,
  • Hong Fan,
  • Carla Bittencourt,
  • Jintao Wan and
  • Philippe Dubois

Beilstein J. Nanotechnol. 2018, 9, 3053–3068, doi:10.3762/bjnano.9.284

Graphical Abstract
  • reference sample. FTIR and XPS FTIR is very useful in confirming the structures of LDH materials at the molecular level, as it provides important information about the interlayer anions. Figure 4 shows the FTIR spectra of NLDH and OLDH. The broad band in the range of 3700–3200 cm−1 is assigned to the O–H
  • consistent with the following XPS, XRD and elemental analysis results. The presence of the elements Mg, Al, Si, O, C and N in OLDH is further confirmed by XPS. The survey spectra illustrated in Figure 5 show the peaks of electrons emitted from the Mg 2p, Mg 2s, Al 2p, and Al 2s core levels. Compared to NLDH
  • ), leading to the enhancement of thermal stability. Furthermore, the morphology of char residues after thermal degradation in both N2 and air was investigated through SEM with the images shown in Figure 12, and the change of surface components before and after degradation were examined through XPS with plots
PDF
Album
Full Research Paper
Published 19 Dec 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • rGO flakes coated with PANI and decorated by hexNb nanoscrolls. To analyse the reduction of graphene oxide under the present conditions, GO and rGO samples were characterised by XPS spectroscopy. High-resolution XPS spectra can also provide information on the reduction degree of GO, since C 1s core
  • level photoelectrons present slightly different binding energies depending on the environment of the carbon atoms. Figure 4 shows the high-resolution XPS spectra at the C 1s core level for GO and rGO samples prepared by reactions at 25 °C for 7 days and at 80 °C for 3 h (rGO-25 and rGO-80, respectively
  • ). XPS spectra of GO and rGO-25 consist mainly of two asymmetric and highly overlapping peaks (maxima at ca. 285 and ca. 287 eV). The comparison of these spectra clearly shows the increase of relative intensity of the low-binding energy peak upon reduction. This is attributed to the partial recovery of
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • bonding was collected by X-ray photoelectron spectrometry (XPS, K-Alpha, Thermo Scientific) and Raman spectroscopy (EZRaman-N-785, TSI. Inc.), respectively. Electrochemical characterization of the samples was performed using an Autolab PGSTAT204 (Metrohm Autolab B.V.) with a three-electrode configuration
  • . Figure 5b,c depicts the high-resolution XPS core-level W4f and O1s spectra, respectively. The W 4f orbitals in Figure 5b are almost identical in the three samples and can be resolved into W 4f5/2 and W 4f7/2. The two main peaks correspond to the W4f7/2 and W4f5/2 of the tungsten atoms in a +6 oxidation
  • synthesis temperature demonstrated the increasing stability of the samples as the interlayer water and coordinated water molecules disappeared successively with only a few unavoidable surface-absorbed water molecules left [49][50]. The above XPS results confirm the SEM analysis. To get further inside of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • metal oxides, is proposed. In detail, the enhanced sensing performance is accounted for by chemical bonds between graphene and metal oxides. Many XPS studies have claimed that there indeed exist chemical bonds between metal oxides and graphene. WO3, a transition-metal oxide semiconductor is widely used
  • confirmed that there existed C–O–W chemical bonds between WO3 and graphene by Raman and XPS measurements. The proposed sensing mechanism is shown in Figure 5. When exposed to oxygen or NO2 molecules, the gas molecules adsorbed on WO3 nanospheres cause the energy band to bend upward via obtaining electrons
  • of graphene may also enhance the response because graphene offers conductive pathways that enhanced the efficiency of charge-carrier transfer in the composites. Zhang et al. [60] fabricated a Co3O4–graphene gas sensor through a traditional hydrothermal method. The XPS results certified that Co–O–C
PDF
Album
Review
Published 09 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron (XPS and Auger) and ultraviolet–visible spectroscopy (UV–vis) as well as contact angle measurements. It was found that different morphologies of the roughened Ag films could be obtained under controlled
  • Rigaku Miniflex 600@40 kV 15 mA diffractometer using Cu Kα1 radiation (λ = 1.541 Å). XPS measurements were performed using a K-Alpha XPS spectrometer (ThermoFischer Scientific, East Grinstead, UK). Data acquisition and processing was done using the Thermo Avantage software. All samples were analyzed
  • characterization of hydrogen and nitrogen plasma treated silver films Neither XPS analysis nor Auger spectroscopy could detect the presence of nitrogen in the nitrogen plasma treated samples (Figure 4a and Figures S9–S11 and Table S1 and Table S2, Supporting Information File 1). Even depth profiling using Auger
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • defects introduced by tuning the irradiation time. A few milligrams of the corresponding oxidized SWCNTs were analyzed in each case before proceeding to step 2. At this stage, the samples were protected under argon gas to avoid any moisture contamination and directly analyzed by HRTEM, XPS and TGA-MS
  • HNO3 65% and grafted with the FcETG8 ferrocene derivative. After step 3 of the functionalization process, we used a set of complementary techniques to determine the success of the covalent functionalization of the CNT samples. XPS analyses were realized on CNT powders to see if the ferrocene groups
  • components contributing to the C 1s signal, has also doubled. Oxidation step 1 has therefore increased the number of oxidized defects on CNT sidewalls and extremities, at least at the surface of the bundles, which was probed by XPS. It should be pointed out that our raw HIPCO sample has already been
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • . Patterns were collected for 1 h at a step size of 0.01° from 10 to 85° 2θ at 1.3° per minute over the 2θ axis. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Supra with Al Kα X-ray radiation (hν 1486.7 eV). High-resolution scans of the O 1s, C 1s, Na 1s, Cr 2p, Na 1s and Mo 3d
  • regions were acquired with 10 eV pass energy and about 0.4 eV spectral resolution to discriminate the substructure of the spectral lines. Ar+ ion cluster etching was employed for XPS depth profiling and the calibration was carried out using a typical Mo on glass sample with sputtering rate of 15.5 nm/s
  • mechanism of Cr and Na to the top layer, we first heated the Mo/Cr films on SLG to 550 °C for 30 min in argon atmosphere. This is the temperature that is normally used for sulfurization and selenization of CIGS and CZTS layers. Then XPS depth profiling was performed on the annealed Mo/Cr films to search for
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • is supported by the fact that atomic radii for O (48 pm) and F (42 pm) are similar enough to allow for the replacement of the former, effectively doping the material by creating oxygen vacancies and different energy states [29]. XPS To characterize the surface chemistry, high-resolution XPS
  • growth orientation with an expanded representation of 3 × 3 × 4 cells as shown in Figure 3. Taking into account the XPS analyses, a higher concentration of F− ions could be responsible for such changes in the lattice parameters as a result of the doping effect, which might be reflected in the electrical
  • nanotube length and the chemical composition is established in agreement with the results obtained by XPS and XRD. While the previous results were obtained from potentiodynamic experiments (LSV), a comparative analysis can be done by establishing a constant polarization to understand the sweep-rate
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018
Other Beilstein-Institut Open Science Activities