Search results

Search for "oxidation" in Full Text gives 760 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • pollutants, such as adsorption, coagulation, filtration, and chemical and biochemical oxidation [10][11]. Advanced oxidation processes (AOPs) have recently attracted attention due to their simple operation, low cost, and potentially high effectiveness. AOPs are the technologies that use various chemical
  • methods to treat wastewater to purify water quality, such as electrochemical oxidation [12], Fenton method [13], ozonation [14], and photocatalysis [15]. They can achieve a fast reaction rate and extremely high organic removal ratio under average temperature and pressure to remove or decompose organic
  • Fenton method exhibits high oxidation capability and low selectivity for removing most organic substances. It can decompose organic pollutants into smaller organic molecules and generate carbon dioxide, water, and inorganic ions [17]. Generally, the ferrous ion employed in the Fenton reaction is from
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • melt by atomic force spectroscopy. We find that the interfacial energy with Ga–In–Sn eutectic melt is a factor two to eight smaller than its surface tension for all asperities. We find that the interfacial energy is influenced by oxidation of the melt at the SiOx–liquid metal alloy interface, which
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • into IPA and then DI water bath for 1 h. Finally, the graphene on the receiving substrate was blow-dried with N2. Optical microscopy A selective oxidation method was adopted to rapidly identify the as-grown graphene, enabling the direct optical inspection of the graphene domains without the laborious
  • transfer process. Following this method, the Cu substrate with graphene was first oxidized in ambient air on a hot plate at 200 °C for 2 min. The graphene film on the Cu substrate serves as a protection layer, preventing the underlying Cu surface from oxidation because of its high chemical/thermal
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • some Bi2WO6/TiO2 composites, which were employed in various photocatalytic applications, such as degradation of organic pollutants [25], oxidation of methane [24], and production of hydrogen by water splitting [26]. According to these reports, Bi2WO6/TiO2 composites have better photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • depend on the number of layers and the distance between the layers, which can be changed by a variation of the synthesis protocol to achieve a higher electroactive surface area and electrical conductivity. Figure 4A displays a higher oxidation/reduction peak current of Fe2+/3+ redox couple for the
  • absorption of PT through π stacking interaction between aromatic moieties of GO and the benzene ring of PT. In comparison, the highest cathodic/anodic peak was obtained at −0.58 and −0.05 V, respectively, for the electro-reduction/oxidation of PT on ERGO/GCE. The oxidation/reduction potentials of PT on ERGO
  • ) to form its hydroxylamine derivatives (NHOH–PT) involving a four electron-transfer process as shown in Figure 5C [16][17][18][35]. An anodic peak appeared at −0.05 V in the backward segment of the first cycle, which is related to the oxidation of NHOH–PT to a nitroso group (NO–PT). This reversible
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • conductivity of PANI [2]. PANI can be synthesized chemically or electrochemically, with different results in terms of polymer conductivity [3]. There are three different ground states of oxidation, which leads to a large spectrum of the electric properties of PANI. First, leucoemeraldine, the fully reduced
PDF
Album
Full Research Paper
Published 26 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • observed in EuS/Al structures [45][46], and the microscopic origin is yet unclear. A possible explanation are misaligned spins at the interface, which are nearly free and therefore gradually aligned by the applied field. The misaligned spins might be the result of partial oxidation of the EuS surface
PDF
Album
Full Research Paper
Published 20 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • , in the AFM image in Figure 2c, one can clearly see the presence of particle aggregates, which were reported to be oxidation products (MoOxSey or MoO3) either through the CVD growth process or through aging in air. Sahoo et al. have reported that the aging of WSe2 flakes by exposure to air produces
  • nanoparticles, which lead to a redshift by 2 to 4 nm in the photoluminescence peak position as compared to the pristine flake. They attributed the observed photoluminescence redshift to the formation of different states or strains in the presence of oxidation nanoparticles [42]. In Figure 2f, we see redshifts
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • precursor solutions show redox peaks associated with the oxidation/reduction of the precursor ions on the surface of the FTO electrode. In detail, the CV recorded in Na2S solution shows a broad anodic peak around −0.50 V due to the oxidation of S2− ions [25][26]. The CV curve of (NH4)6Mo7O24 solution
  • recorded in the mixture solution showed two oxidation peaks at −0.20 V and −0.50 V attributed to the oxidation of Mo7O246− and S2− ions, respectively. Moreover, a new reduction peak appeared around −1.20 V related to the reduction of MoS42− to form MoS2 as described in Equation 5. This CV behavior is
  • and compared to that of a Pt CE. As can be seen in Figure 5, there are two redox pairs (Ox1/Red1) and (Ox2/Red2). These redox peaks were well defined as the oxidation and reduction of iodide and triiodide (3I− − 2e− → I3− (Ox1), I3− + 2e− → 3I− (Red1) and 2I3− − 2e− → 3I2 (Ox2), 3I2 + 2e− → 2I3− (Red2
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • collagenase and elastase enzymes were investigated compared to those of the solution form. Within the scope of antioxidant activity studies, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) radical scavenging and β-carotene/linoleic acid co-oxidation
  • thus protect cells from oxidation-induced damage by slowing/inhibiting oxidation. They are of critical importance in maintaining the structural integrity of cells/tissues and ensuring the continuity of their functions, which include the ability to prevent side effects of free radicals [4][5][6
  • values compared to the those of the standard (14.2 µg/mL and 1.54 µg/mL, respectively) [32]. However, the β-carotene/linoleic acid co-oxidation inhibitory effects of our ethosomal formulations were different when compared to those of the synthetic antioxidant butylated hydroxytoluene (BHT) used as the
PDF
Album
Full Research Paper
Published 31 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • nanostructures were obtained by a one-step hydrothermal oxidation method. The resulting coating is uniform and dense and shows good adhesion to the wire surface. Structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive
  • , such as thermal oxidation of copper electrodes in an oxygen atmosphere [72][73], hydrothermal chemical oxidation of copper surfaces [56], and hydrothermal synthesis using various precursors containing copper ions [74][75]. Copper oxide nanostructures can also be obtained as a powder and then applied to
  • electrodes without additional treatments such as surface modification or enzyme immobilization. This article describes the process of obtaining wire electrodes with nanostructured CuO coatings by a one-step chemical hydrothermal oxidation method and their application in electrochemical measurements for the
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • /NCD, and PANI/BaTiO3) sensing layers were fabricated similarly as reported in [10]. The whole fabrication process of the sensor array is described in Figure 13. First, the protonated emeraldine salt form of PANI was prepared by oxidation of 0.2 M aniline hydrochloride with 0.25 M ammonium persulfate
PDF
Album
Full Research Paper
Published 27 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • , cysteine, and glutamic acid. The cysteine residue plays a pivotal role in protecting the body from oxidation damage; however, GSH is easily metabolized by enzymes [23]. In this work, we employed a facile co-assembly strategy to design hybrid nanoparticles as antioxidants [24][25][26][27][28][29][30][31
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • transitions using the Tauc method. Structure and elemental composition Surface properties The oxidation state of copper on the surface of (Ti0.48Cu0.52)Ox thin film was analyzed with the XPS Cu 2p core level spectrum (Figure 6). The Cu 2p core level has split spin–orbit components with ΔBE of 19.8 eV and an
  • intensity ratio of Cu 2p1/2 and Cu 2p3/2 of approximately 0.5. It is possible to distinguish Cu oxidation states taking into consideration not only the position of the Cu 2p3/2 peak but also the satellite features that could be visible above the binding energy of this peak. According to Biesinger [48][49
  • oxidation state +4 of titanium present at the surface. The ratio between the areas of the Ti 2p3/2 and Ti 2p1/2 peaks is equal to 2:1, which confirms the presence of stoichiometric TiO2 at the surface of (Ti0.48Cu0.52)Ox thin film. Furthermore, the O 1s spectrum (Figure 6c) was deconvoluted into three peaks
PDF
Album
Full Research Paper
Published 24 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • solution and corrosion products on the surfaces reduced the friction coefficient [16][17]. The native oxide layers grown in the air were found to strengthen the friction coefficient and the wear resistance of MGs at the nanoscale [18][19]. The thermal oxidation caused a higher contribution of shearing and
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • surfactants. Despite the absence of surfactants, the small-sized NPs are stable, in agreement with previous surfactant-free Os NP syntheses [37]. This can be attributed to chloride stabilization and/or stabilization by oxidation products of the monoalcohols [25]. Here, as opposed to the synthesis of Pt, Ir
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • the oxidation state of the Ru ions bound to the respective molecular compounds is not feasible by these methods. In contrast, XPS BE highly depend on the oxidation state and/or the chemical composition and are, thus, a suitable means to reveal details of the Ru(TP)2-complex wire growth process
  • has been successfully conducted and reveal the oxidation state of Ru during complex wire growth [19]. Electrical properties of Ru(TP)2-complex devices Here, we study the relation between device design and device performance and compare the transport and optical switching properties of functional Ru(TP
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • photocatalytic activity. Upon UV irradiation, the electrons in the valence band get excited to the conduction band, leading to the formation of electron–hole pairs and the generation of ROS. Subsequently, the generated holes (h+) convert water/hydroxide molecules to peroxide/hydroxyl radicals by oxidation. The
  • the main connective tissue cells that secrete the collagen-rich extracellular matrix (ECM) for generating soft tissues that bind with the implants. Wang and co-workers reported that the super hydrophilic nanotubular structure of hydrogenated TiO2 prepared by anodic oxidation and thermal hydrogenation
PDF
Album
Review
Published 14 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • reduction of the respective compound while ionization through electron removal represents oxidation. Thus, if sufficient proximity is provided, DEA as an initial fragmentation step should provide the prerequisite for metal–metal bond formation and nucleation points for further CO loss as is shown
PDF
Album
Full Research Paper
Published 04 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 10.3762/bjnano.13.12 Abstract Thermal oxidation of Si(113) in a monolayer regime was investigated using high-temperature scanning tunneling microscopy (STM). Dynamic processes during thermal oxidation were examined in three
  • oxidation modes – oxidation, etching, and transition modes – in the third of which both oxidation and etching occur. A precise temperature–pressure growth mode diagram was obtained via careful measurements for Si(113), and the results were compared with those for Si(111) in the present work and Si(001) in
  • the literature. Initial oxidation processes were identified based on high-resolution STM images. Keywords: high-index Si surface; in situ measurement; oxidation; scanning tunneling microscopy (STM); Introduction High-index silicon surfaces have drawn considerable interest for their usefulness in
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • 5.5 [63]. Utilizing the synergistic effect of the oxidation of manganese dioxide and strong adsorption of iron oxides to As5+, Aliahmadipoor et al. developed a novel electrospun nanohybrid membrane incorporating inorganic Fe–Mn binary oxide nanoparticles into PVDF for the decontamination of As5+. A
PDF
Album
Review
Published 31 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • the oxidation of iron in the heme group. Methemoglobin is not able to release oxygen [14][15]. It is, therefore, not suitable for the use in the production of HbMP applied as an artificial oxygen carrier. Since the aforementioned sterilization methods cannot be used, the solution to obtain sterile
PDF
Album
Full Research Paper
Published 24 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • received particular attention from the scientific community. The photocatalytic NOx oxidation will be an important contribution to mitigate climate change in the future. Existing review papers mainly focus on applying SnO2 materials for photocatalytic oxidation of pollutants in the water, while studies on
  • review. Keywords: green products; nanomaterials; NO oxidation; photocatalysis; SnO2; Review Introduction A World Health Organization (WHO) report indicated that 4.2 million deaths every year occur due to exposure to ambient (outdoor) air pollution [1]. This number is much higher than the deaths from
  • in recent years. There are many methods for controlling and removing NOx, such as reducing the burning temperature, reducing the residence time at peak temperature, chemical reduction or oxidation of NOx, removal of nitrogen from combustion fuels, and sorption, both adsorption and absorption [7][8
PDF
Album
Review
Published 21 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • partial PEI oxidation during the synthesis. Here, we demonstrate in vitro dye-free optical imaging and successful gene transfection with luminescent SPION@bPEI, which was further modified for receptor-mediated delivery of the cargo selectively to cancer cell lines overexpressing the epidermal growth
  • the backbone, acidification of amines, hydrogen bonding, exciplex formation, amine oxidation, and solvent-induced aggregation were reported as factors that amplify the weak luminescence of PEI and amine-containing dendrimers [15][16][17][18][20][24]. The luminescence of these materials is especially
  • to SPION which has strong absorbance in the visible window of the electromagnetic spectrum. A tremendous enhancement in the poor, mostly unrecognized and unutilized blue luminescence of bPEI was achieved when it was used as a coating on SPION crystals. We suggested that the partial oxidation of the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • thermally oxidized SiOx layer and covered with a 3 nm Al capping layer to prevent oxidation. Composition and layer thicknesses were determined by calibrating the sputter rates with a quartz balance before the depositions. Thus, the sample structure was as follows: Al (3 nm)/Gd26Fe74 (15 nm)/Pt (5 nm)/SiOx
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022
Other Beilstein-Institut Open Science Activities