Search results

Search for "absorption" in Full Text gives 897 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • reduction of AgNO3. The formation of small gold NPs (Figure 2) was confirmed by the presence of the LSPR band detected at 531 nm in the UV–vis spectrum. The subsequent addition of AgNO3 resulted in a change of the extinction spectrum with the formation of a higher and broader absorption band at 402 nm
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • nanocrystals. The X-ray diffraction pattern confirms the hexagonal structure. Due to the near-infrared light absorption capability, the synthesized QDs were used as the sensitizer to fabricate QDSCs. The fabricated QDSCs were characterized by using electrochemical impedance spectroscopy and photovoltaic
  • [4][5][6][7]. At present, QDSCs have reached 14.4% efficiency. In QDSCs, QDs are added to the metal oxides. Our earlier reports demonstrated that porous TiO2 nanofibers possess an enormous surface area for the maximum absorption of QDs [8][9][10]. For the past decades, binary or ternary QDs based on
  • . Hence, they have application potential in optoelectronic devices. Herein, we synthesized, for the first time, Ag, Zn, Ga, S, and Se-based alloyed QDs (AZGSSe QDs) and investigated the optoelectric and morphological properties. Due to the near-infrared (NIR) light absorption, the QDs were used as
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • environmental restoration and energy conversion is photocatalysis powered by solar light. Traditional photocatalysts have limited practical uses due to inadequate light absorption, charge separation, and unknown reaction mechanisms. Discovering new visible-light photocatalysts and investigating their
  • photocatalytic effectiveness of those semiconductors is inadequate for practical environmental and energy conservation applications because of substantial electron–hole recombination and a low capacity for the absorption of visible light. Numerous attempts have been made, with an emphasis on doping, the creation
  • in rapid recombination [43]. In addition to a low rate of recombination, other essential qualities of a superior photocatalyst include broad sunlight absorption and enough redox capacity. A small bandgap is desirable regarding a broad light absorption band. However, when redox ability is considered
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • particles were homogeneous; the maximum absorption wavelength was 518 nm with narrow peak width in the UV spectrophotometer 400–700 nm scan; the purified HBsAg Mab concentration was 65 mg/mL; the optimal protein protection amount was 32.5 μg per mL of colloidal gold at pH 8.2; the quality of the probe was
PDF
Album
Review
Published 03 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • polymeric pads are 48 mm in diameter and filled with an oil-absorbing material. On the outside, they are covered with superhydrophobic and oleophilic nanofur, which repels water and attracts oil at the same time. In order to utilize this feature in an efficient way and to allow for continuous oil absorption
  • contact angle measurements, especially on hydrophobic surfaces, can further distort the measured values [30]. The quality of the nanofur in terms of its hydrophobicity and oil absorption quantity depends on several processing factors including length of the hairs, their density, and their overall
  • account [30]. To illustrate the superhydrophobic properties of the nanofur, the video in Supporting Information File 1 shows water drops on a polypropylene sheet rolling around as the sheet is tilted. The high contact angle can be seen even with the naked eye. Since oil absorption is one of the
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • resonance [10], Fourier transform infrared spectrometry (FTIR) [11], UV–vis absorption spectrometry [12], mass spectrometry (MS) [13], titration microcalorimetry [14], high-performance liquid chromatography (HPLC) [15], gas chromatography (GC), capillary electrophoresis (CE) [16], and electrochemical chiral
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • between absorption and evaporation. Whether there is an upper limit for the dynamic balance is not clear for the time being, but the qualitative conclusion conforms to basic logic and is still used as a guiding principle for improving the output power. In terms of airflow direction, the output voltage is
  • absorption of samples with different hydroxy group content and structural collapse of samples with high hydroxy group content. Figure 7c–f were reproduced from [80], Li, Mingjie et al., “Biological Nanofibrous Generator for Electricity Harvest from Moist Air Flow”, Adv. Funct. Mater., with permission from
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • externally administered drugs, rate and degree of absorption depend on the time the drug remains at the application site [43]. Up to 95% of the eye surface is covered by the sclera, which is well permeable to substances smaller than 70 kDa, including neuroprotective, antioxidant, or anti-angiogenic agents
  • . For comparison, the cornea permeates substances with a mass not greater than 1 kDa [28]. Unfortunately, transscleral absorption is often reduced by elimination via nasolacrimal drainage pathways, tear protein binding, or drug metabolism [44]. The treatment efficiency is also decreased by constant
  • photopolymerization of photosensitive polymers, but in this case each layer of the polymer is projected as whole [152]. A more complicated method is two‑photon polymerization (TPP), which uses a near-infrared beam instead of UV radiation. TPP initiates the polymerization of the resin by multiphoton absorption [153
PDF
Album
Review
Published 24 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • are different approaches to mitigate NO pollution, including catalyst/non-catalyst [4], oxidation [5], bioprocesses [6], adsorption [7], absorption [8], and non-thermal plasma technologies [9]. Photocatalytic oxidation is considered a promising approach due to its ability to degrade various air
  • oxide with wide bandgap (3.5–5 eV), high availability, non-toxicity, low cost, and native structural defects [18][19]. The large bandgap energy is the limitation of MgO, reducing the photocatalytic performance and applicability of MgO [20]. Various efforts have been made to enhance the absorption in the
  • equation as described in Equations 5–7 [43]: where E is the photon energy (eV), h is Planck’s constant (4.132·10−15 eV·s), ν is the photon frequency (s−1), c is the velocity of light (nm·s−1), λ is the wavelength (nm), α is the absorption coefficient, B is a constant, and Eg is the bandgap energy (eV), R
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • Equation 3. Figure 8 shows the degradation absorption spectra of MO and MB by synthesized ZnO under visible and UV light for different time intervals. The intensity of the peak decreased with increasing irradiation time. The results in Figure 9 show that the degradation efficiency of MB and MO solutions
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • ]. Chlortetracycline (CTC) is the first tetracycline antibiotic used for veterinary purposes [3]. Due to the abusive use of CTC in livestock industry and the low absorption in animals, a large amount of CTC has been released into the environment through animal excretions. At present, CTC has been detected in aquatic
  • investigate the optical response and bandgap of the prepared samples, UV–vis diffuse reflectance (UV–vis DRS) spectra were recorded and given in Figure 5. As seen from Figure 5a, both Bi2O3 and MIL101(Fe) show strong visible-light response with absorption edge of 460 nm and 510 nm, respectively. Compared with
  • MIL101(Fe) and Bi2O3, the absorption edge of BOM-20 significantly red shifts to approx. 620 nm. MIL101(Fe) and Bi2O3 show a synergistic effect in improving visible-light absorption of the BOM-20 composite, which improves the photocatalytic activity due to the generation of more photoinduced electrons and
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • analytical model and found a Purcell enhancement of 6 for a pre-selected SPE. The geometrical parameters of our microcavity are all experimentally achievable with the two-photon absorption fabrication process [13][15] and our modeled cavity could easily be extended to contain and enhance spontaneous emission
PDF
Album
Full Research Paper
Published 27 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • -workers reported the ORR activity of Ag–Co NPs dispersed on Vulcan XC72 carbon by incipient-wetness impregnation [22]. In general, the addition of a third metal to a bimetallic composition is considered to be an effective method to augment the absorption energy and improve the kinetics of the ORR [23]. Gu
  • trimetallic atoms finely dispersed over rGO. Moreover, based on the d-band centre theory, the low value of Ag impacts the low oxygen absorption energy, which can be boosted by doping with copper atoms on the surface [31]. The efficiency of the ORR depends on the design and composition of the catalyst for
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • terahertz band, it can cover most of the gas molecular-fingerprint absorption spectrum and atmospheric transmission window, and it will not damage organisms. Modulation of QCLs is an effective method of suppressing low-frequency noise and improving the signal-to-noise ratio. Various approaches to modulation
  • /τsp is the spontaneous emission rate of the upper laser subband, α is the cavity absorption coefficient, β is the rate of spontaneous emission getting into the laser modes, nk is the k-th subband population, S is the photon population in the cavity, and the laser upper and lower subbands are denoted
PDF
Album
Full Research Paper
Published 23 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • Nanotechnologies, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Brazzaville, Congo 10.3762/bjnano.13.85 Abstract In this study, we present theoretical X-ray absorption near-edge structure (XANES) spectra at the K-edge of oxygen in zirconia containing Ni dopant atoms and O vacancies at
  • and magnetic order in a typical diluted magnetic oxide. Such a finding may be crucial for spintronics-related applications. Keywords: defect; ligand field; nickel; oxidation state; oxides; spectroscopy; spintronics; vacancy; X-ray absorption; X-ray absorption near-edge structure (XANES); zirconia
  • which is being currently employed in ultra-scaled electronics for its high dielectric constant [24][25] have received significant attention because of its practical applications. Thus, recently, exploiting first principles simulations and X-ray absorption near edge spectroscopy (XANES) in high magnetic
PDF
Album
Full Research Paper
Published 15 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFexNi1−xO3 perovskite oxides to
  • essential role in photocatalytic reactions for wastewater [38]. Fe doping of LaNiO3 revealed the potential of tuning bandgap and boosting the light absorption to degrade RhB [39]. However, little literature comprehensively and systematically discusses the effect of different doping ratios on photocatalytic
  • reactions. Moreover, LaNiO3 revealed broad absorption in the visible light range [38], so the Ni doping was expected to improve the visible light harvesting of LaFeO3. Accordingly, little literature explored the effect of Ni substitution to LaFeO3 on the performance of photocatalytic Fenton-like reaction to
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Ideal Kerker scattering by homogeneous spheres: the role of gain or loss

  • Qingdong Yang,
  • Weijin Chen,
  • Yuntian Chen and
  • Wei Liu

Beilstein J. Nanotechnol. 2022, 13, 828–835, doi:10.3762/bjnano.13.73

Graphical Abstract
  • perfectly zero. For general discussions of optical properties, such as scattering and absorption cross sections, it is physically legitimate to take into consideration only those dominant contributing multipole terms and drop other minor ones (such as in the widely adopted dipole approximation). While for
  • enlarged part of the spectra close to xA in logarithmic scale), though they are much smaller than those of dipoles. For explorations of general properties like scattering and absorption cross sections, it is fine to drop those quadrupole terms and to keep the dipole terms only. Nevertheless, for the study
PDF
Album
Full Research Paper
Published 24 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • between the plant surface and insect adhesive devices [16][18], and absorption of the insect adhesive fluid [19]. Whereas the upper wax platelets are rather fragile and can be easily broken into small pieces and removed from the slippery zone thus contaminating insect attachment organs, the pitchers still
PDF
Album
Full Research Paper
Published 22 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • diffraction patterns of the synthesized KP15 were both theoretically calculated and experimentally measured. The consistency between the two patterns shows that there is no impurity phase (Figure 1b), which confirms an excellent crystallization quality of the KP15 bulks. Measurement of the absorption
  • KP15 dispersions. The Lambert–Beer law (Equation 3) was then used to measure the concentration of the KP15 dispersions: where A is the absorbance, K is the absorption coefficient of the material, b is the absorbing layer thickness (which in this work is the width of the cuvette, i.e., 1 cm), and C is
  • the concentration of the KP15 dispersions. The absorbance A and the absorption coefficient K are related to the wavelength of the incident light. To determine A and K, it is necessary to choose a specific incident wavelength. The bandgap of bulk KP15 is approx. 1.75 eV [20]. However, according to our
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • the uniform anchoring of Bi2WO6 nanoparticles on TiO2 nanotubes, as well as strong mutual effects and well-proportioned formation of heterostructures in between the Bi2WO6 and TiO2 phases. These improvements arose from the cellulose-derived unique structures, leading to an enhanced absorption of
  • ][8]. However, the wide bandgap of TiO2 inhibits the absorption of light in the visible region and the rapid recombination of photogenerated electron−hole pairs restrains its photocatalytic activity. It has been verified that constructing TiO2-based heterostructured composites by using visible-light
  • TiO2-NT, and pure Bi2WO6 powder samples, where all present two similar absorption bands at 1625 and 3420 cm−1 which can be indexed to the stretching vibration of adsorbed H2O and –OH group on the sample surface [37]. Apart from the 30%−Bi2WO6/TiO2-NT nanocomposite, the FTIR spectra of the other Bi2WO6
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples. Keywords: electrochemical nanosensor
  • (mass, absorption, fluorescence) techniques are time-consuming, laborious, costy, require specific and sophisticated instruments and trained personnel, and most often are not portable to enable on-site detection [5][6]. Electrochemical nanosensors are one of the preferred methodologies due of their fast
  • PT was tested five times, and the average value was represented with standard deviation. The results also validate the standard spectrophotometric analysis. Quantification of parathion using spectrophotometry The ultraviolet–visible (UV–vis) absorption spectroscopic study was performed to validate
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • /bjnano.13.59 Abstract A tunable graphene absorber, composed of a graphene monolayer and a substrate spaced by a subwavelength dielectric grating, is proposed and investigated. Strong light absorption in the graphene monolayer is achieved due to the formation of embedded optical quasi-bound states in the
  • continuum in the subwavelength dielectric grating. The physical origin of the absorption with high quality factor is examined by investigating the electromagnetic field distributions. Interestingly, we found that the proposed absorber possesses high spatial directivity and performs similar to an antenna
  • , which can also be utilized as a thermal emitter. Besides, the spectral position of the absorption peak can not only be adjusted by changing the geometrical parameters of dielectric grating, but it is also tunable by a small change in the Fermi level of the graphene sheet. This novel scheme to tune the
PDF
Album
Full Research Paper
Published 19 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • wavelength of 660 nm and the number of graphene layers was calculated for each sample, taking into account an absorption of 2.3% for each layer of graphene, as in the work by Bonaccorso and co-workers [43]. Although atomic force microscopy (AFM) is often employed to characterize graphene films [2][12][14][44
PDF
Album
Full Research Paper
Published 18 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • the preparation of berberine (BBR) in nanoformulation to enhance its solubility and increase its antibacterial effectiveness against hospital-acquired infections. BBR nanoparticles (BBR NPs) were formed by antisolvent precipitation (ASP) using glycerol as a safe organic solvent. UV–vis absorption
  • solubility of a drug leads to low drug absorption. Thus, a sufficient drug concentration in plasma is not achieved, and a high therapeutic effect is not reached. As a result, high dose requirements and more adverse side effects limit the development of phytochemicals in the pharmaceutical industry. BBR
  • belongs to the class-III drugs in the biopharmaceutical classification system, indicating that BBR is a lipophilic compound that has poor absorption and low bioavailability [24]. To improve the effectiveness of BBR, many approaches have been proposed, including synergistic effects with other drugs [3
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022
Other Beilstein-Institut Open Science Activities