Search results

Search for "density functional theory (DFT)" in Full Text gives 160 result(s) in Beilstein Journal of Nanotechnology.

Nitrous oxide as an effective AFM tip functionalization: a comparative study

  • Taras Chutora,
  • Bruno de la Torre,
  • Pingo Mutombo,
  • Jack Hellerstedt,
  • Jaromír Kopeček,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2019, 10, 315–321, doi:10.3762/bjnano.10.30

Graphical Abstract
  • characterize the adsorption of the N2O species on Au(111) by means of atomic force microscopy with CO-functionalized tips and density functional theory (DFT) simulations. Subsequently we devise a method of attaching a single N2O to a metal tip apex and benchmark its high-resolution imaging and spectroscopic
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2019

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • that, except for the hydrogen atom, exact solutions of this equation do not exist. Therefore, a large number of methods for numerical solutions have been developed. Most successful are calculations based on density functional theory (DFT). This kind of modelling has some restrictions, i.e., the
PDF
Album
Review
Published 23 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • ]. Calculations by the density functional theory (DFT) indicated that a partial substitution of Cs+ with Rb+ should considerably increase the stability of CsSnI3 [117]. To avoid a partial conversion of Sn2+ into Sn4+, the latter acting as charge carrier traps in ASnX3 HPs, it was suggested to deposit the
PDF
Album
Review
Published 21 Aug 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • activity of the SnSe2(1-x)S2x monolayer. Keywords: density functional theory (DFT); electronic properties; hydrogen evolution reaction; mechanical strain; SnSe2(1−x)S2x monolayer; Introduction Hydrogen is a clean energy source with outstanding properties such as high specific energy per mass, easy
  • . In this work, the electronic properties and catalytic behaviour for HER of SnSe2(1−x)S2x (x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.750, 0.875 and 1.0) monolayers were investigated by density functional theory (DFT). It was shown that band gap and catalytic activity of these alloys can be continuously
  • functional theory (DFT) computations. The results showed SnSe2(1−x)S2x alloys with continuously changing bandgaps from 0.8 eV for SnSe2 to 1.59 eV for SnS2. The band structure of a SnSe2(1−x)S2x monolayer can be further tuned by applied compressive and tensile strain. Moreover, tensile strain provides a
PDF
Album
Full Research Paper
Published 18 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • , only few possess all necessary properties and many of them are unstable. Therefore, to explore more experimentally feasible and stable half-metallic materials is highly desirable. In this paper, a density functional theory (DFT) study is carried out to show that monolayer XS2 (X = Mo, W) can
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • -atoms for samples with 0.6–0.7 atom % P. It appears more consistent with the available data that P-induced defects (e.g., from interstitial P in the Si NCs or SiOx:P-related states at the surface) cause the PL quenching, as supported by density functional theory (DFT) calculations [29][41]. In that
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Predicting the strain-mediated topological phase transition in 3D cubic ThTaN3

  • Chunmei Zhang and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1399–1404, doi:10.3762/bjnano.9.132

Graphical Abstract
  • of the N atom [12][29][30]. Computational Methods First-principles calculations were performed based on density functional theory (DFT) as implemented in the plane wave basis VASP code [31][32][33]. A generalized gradient approximation (GGA) in the Perdew, Burke, and Ernzerhof (PBE) form exchange
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • that includes multilayer precursor coverage to describe FEBID processes at lower temperatures or with less volatile precursors [30]. Using density functional theory (DFT) calculations, new light was also shed on an experimentally well investigated precursor, namely (CH3–C5H4)Pt(CH3)3. The interaction
PDF
Editorial
Published 30 Apr 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • . b) A sketch of intercalated smectic phase of a BB–CBI mixture comprising the ratio of two molecules of BB versus one molecule of CBI (blue square). The phase behaviour and molecular length, L, obtained at the B3LYP/6-31G level of density functional theory (DFT). The phase transition temperature (°C
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations

  • Olga E. Glukhova and
  • Dmitriy S. Shmygin

Beilstein J. Nanotechnol. 2018, 9, 1254–1262, doi:10.3762/bjnano.9.117

Graphical Abstract
  • modern computing tools. The non-equilibrium Green function (NEGF) method with density functional tight-binding (DFTB) scheme or density functional theory (DFT) scheme is used to calculate the electrical conductance of molecular structures consisting of atoms of various elements with high accuracy [8
PDF
Album
Full Research Paper
Published 20 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • , electronic and optical properties using density functional theory (DFT), hybrid functional and Bethe–Salpeter equation (BSE) approaches. We find that the exfoliation of single-layer SiAs2 and GeAs2 is highly feasible and in principle could be carried out experimentally by mechanical cleavage due to the
  • . Furthermore, band-gap tuning is also possible by application of tensile strain. Our results highlight a new family of 2D materials with great potential for solar cell applications. Keywords: density functional theory (DFT); photovoltaic applications; solar cell; two-dimensional semiconductors; Introduction
  • . Computational Details Density functional theory (DFT) using plane wave Vienna ab initio simulation package (VASP) code is used for first-principle calculations for this study [11][12]. The geometry optimisation is done with generalized gradient approximation in the Perdew–Burke–Ernzerhof form (GGA-PBE) exchange
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi

  • Sahar Pakdel,
  • Mahdi Pourfath and
  • J. J. Palacios

Beilstein J. Nanotechnol. 2018, 9, 1015–1023, doi:10.3762/bjnano.9.94

Graphical Abstract
  • parameters to the specific structural variations which also needs to be parametrized [10]. On the opposite side of sophistication, the electronic structure of topological materials can be evaluated through density functional theory (DFT). According to the type of basis sets, DFT codes fall into two broad
PDF
Album
Full Research Paper
Published 28 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
PDF
Review
Published 27 Feb 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • /bjnano.9.66 Abstract The interaction of trimethyl(methylcyclopentadienyl)platinum(IV) ((C5H4CH3)Pt(CH3)3) molecules on fully and partially hydroxylated SiO2 surfaces, as well as the dynamics of this interaction were investigated using density functional theory (DFT) and finite temperature DFT-based
PDF
Album
Full Research Paper
Published 23 Feb 2018

Gas-sensing behaviour of ZnO/diamond nanostructures

  • Marina Davydova,
  • Alexandr Laposa,
  • Jiri Smarhak,
  • Alexander Kromka,
  • Neda Neykova,
  • Josef Nahlik,
  • Jiri Kroutil,
  • Jan Drahokoupil and
  • Jan Voves

Beilstein J. Nanotechnol. 2018, 9, 22–29, doi:10.3762/bjnano.9.4

Graphical Abstract
  • : density functional theory (DFT); gas sensor; interdigital electrodes; nanocrystalline diamond; sensitivity; zinc oxide (ZnO); Introduction Currently, a number of studies have been focused on developing gas sensors based on nanomaterials and/or nanostructures. Metal oxides are the most common sensing
  • hybrid ZnO NRs/NCD sensor is carried out using density functional theory (DFT) calculations. Experimental Three different sensor designs were utilized with width and spacing of Au/Ti metal interdigital electrode (IDE) arrays of 100 μm. A schematic illustration of the sensor platforms is shown in Figure 1
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • with high electronic and ion mobility and large energy storage capacity. Conclusion Using density functional theory (DFT) simulations, the stability and electronic properties of MX2 monolayers were investigated. TiX2, VSe2, CrX2, ZrX2 and HfX2 are energetically favourable in the 1T phase, and 1T-VS2
PDF
Album
Full Research Paper
Published 15 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • functional theory (DFT) for charge transport through C5F-ThM molecular junctions. DFT, as implemented in the TURBOMOLE software package [26], was employed for the calculations using the exchange-correlation functional PBE [27][28][29][30] and the def-SV(P) [31][32] basis set, which is of split-valence
  • optimized, while in the closed form the junctions might be distorted leading to a smaller conductance than in an ideal geometry. As a result, the conductance ratios between the open and the closed forms would be relatively small. For a better understanding, we performed computations based on density
PDF
Album
Full Research Paper
Published 06 Dec 2017

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • The adsorption of the iron tetraphenylporphyrin (FeTPP) molecule in its deckchair conformation was investigated on Au(111), Ag(111) and Cu(111) surfaces by performing spin-polarized density functional theory (DFT) calculations taking into account both van der Waals (vdW) interaction and on-site
  • junction, the line shape of zero-bias resonance of the adsorbed FeTPP molecule reversibly varies by adjusting the tip to surface distance, i.e., by mechanically squeezing the molecule. Density functional theory (DFT) calculations reveal that the spin state of the Fe centre undergoes a switch from S = 2 to
PDF
Album
Full Research Paper
Published 23 Nov 2017

Au55, a stable glassy cluster: results of ab initio calculations

  • Dieter Vollath,
  • David Holec and
  • Franz Dieter Fischer

Beilstein J. Nanotechnol. 2017, 8, 2221–2229, doi:10.3762/bjnano.8.222

Graphical Abstract
  • on the structure of the Au55 nanocluster highlights the necessity to look again at this problem using up-to-date theoretical methods. Therefore, quantum-mechanical calculations within the density functional theory (DFT) framework as implemented in the Vienna ab initio simulation package (VASP) [24
PDF
Album
Full Research Paper
Published 25 Oct 2017

Comprehensive investigation of the electronic excitation of W(CO)6 by photoabsorption and theoretical analysis in the energy region from 3.9 to 10.8 eV

  • Mónica Mendes,
  • Khrystyna Regeta,
  • Filipe Ferreira da Silva,
  • Nykola C. Jones,
  • Søren Vrønning Hoffmann,
  • Gustavo García,
  • Chantal Daniel and
  • Paulo Limão-Vieira

Beilstein J. Nanotechnol. 2017, 8, 2208–2218, doi:10.3762/bjnano.8.220

Graphical Abstract
  • of relevance to estimate neutral dissociation cross sections of W(CO)6, a precursor molecule in focused electron beam induced deposition (FEBID) processes, from electron scattering measurements. Keywords: cross sections; density functional theory (DFT) calculations; focused electron beam induced
  • functional theory (DFT) level with B3LYP functional [35] with all electron and triple-ζ polarized basis sets in vacuum [36], leading to W–C and C–O bond lengths of 2.069 Å and 1.144 Å (1.141 Å from [15]), respectively. The metal bond length is slightly overestimated with respect to previous results yielding
  • accuracy of the cross section is estimated to be better than ±5%. Only when the sample absorbs very weakly (I0 ≈ It), does the error increase as a percentage of the measured cross section. Computational details The structure of W(CO)6 has been fully optimized under the Oh symmetry constraint at the density
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • phthalocyanine (F16CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We
PDF
Album
Full Research Paper
Published 06 Oct 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • a first-principles, self-consistent description of the junction out of equilibrium based on density functional theory (DFT) and non-equilibrium Green’s functions (NEGF). We show how the change in the electronic structure of the junction induced by the presence of the adsorbate promotes the cooling
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • found a similar height variation using density functional theory (DFT) calculations of the intercalation of a single silicon layer in between two MoS2 layers. These calculations are discussed after the presentation of the experimental results. It is immediately obvious from Figure 1f that the transition
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • using an Omicron variable temperature STM in the UHV system at Linköping University. All STM images were measured in constant current mode with a tunneling current of 200 pA. First-principles density functional theory (DFT) calculations were used to investigate the atomic structure of the Ge layer on
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • , and suppress the nanoribbon–substrate interaction. The proposed structural model reproduces well all the experimental findings. Keywords: density functional theory (DFT); scanning tunneling microscopy (STM); silicene; Si nanoribbons; Introduction The discovery of the exotic nature of graphene [1][2
  • into the physics and chemistry of silicene/substrate systems density functional theory (DFT) calculations have usually been required. In all these cases silicene was reported to be formed in 2D domains with a corrugated hexagonal structure. Nevertheless, not all experiments, most notably on Ag(111
  • ), support the scenario of silicene formation, mainly due to a problem with electronic properties. Therefore there is still a significant amount of skepticism about this issue. In many cases density functional theory (DFT) calculations were required to get more detailed information on what structures have
PDF
Album
Full Research Paper
Published 05 Sep 2017
Other Beilstein-Institut Open Science Activities