Search results

Search for "electron beam-induced deposition" in Full Text gives 66 result(s) in Beilstein Journal of Nanotechnology.

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland 10.3762/bjnano.9.24 Abstract Focused electron beam induced deposition (FEBID) is a flexible direct-write method to obtain defined structures with a high lateral resolution. In order to use this technique in application fields
  • , silver crystal growth presents a strong dependency on electron dose and precursor refreshment. Keywords: focused electron beam induced deposition; low volatility precursor; silver; Introduction The fabrication of defined patterns in the nanometer regime demands techniques with high lateral resolution
  • and preferably as few processing steps as possible. Therefore, a maskless direct-write method would be favorable in comparison to common resist-based lithography techniques, which require multiple steps and are reaching their lateral resolution limits. Focused electron beam induced deposition (FEBID
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool
  • removing the carbon matrix and drastically reducing the electrical resistance of the deposit. Keywords: copper; gold; cobalt; focused-electron-beam-induced deposition; noble metal; non-noble metals; post-growth annealing; Introduction Focused-electron-beam-induced deposition (FEBID) constitutes a well
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • Division, Richland, WA, USA Siedlce University, Faculty of Sciences, 4 Maja 54, 08-110 Siedlce, Poland 10.3762/bjnano.9.10 Abstract Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually
  • deposition; nanostructure purification; platinum precursor; Introduction Focused electron beam induced deposition (FEBID) produces solid nanomaterials with size down to the sub-10 nm regime by decomposing precursor molecules adsorbed on a surface under a tightly focused high-energy electron beam [1
  • insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. Keywords: carbon contamination; electron induced reactions; focused electron beam induced
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

  • Leo Sala,
  • Iwona B. Szymańska,
  • Céline Dablemont,
  • Anne Lafosse and
  • Lionel Amiaud

Beilstein J. Nanotechnol. 2018, 9, 57–65, doi:10.3762/bjnano.9.8

Graphical Abstract
  • 10.3762/bjnano.9.8 Abstract Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled
PDF
Album
Full Research Paper
Published 05 Jan 2018

The rational design of a Au(I) precursor for focused electron beam induced deposition

  • Ali Marashdeh,
  • Thiadrik Tiesma,
  • Niels J. C. van Velzen,
  • Sjoerd Harder,
  • Remco W. A. Havenith,
  • Jeff T. M. De Hosson and
  • Willem F. van Dorp

Beilstein J. Nanotechnol. 2017, 8, 2753–2765, doi:10.3762/bjnano.8.274

Graphical Abstract
  • , Cambridge CB21EZ, UK (fax: (+44)1223-336-033; email: deposit@ccdc.cam.ac.uk) (a) A schematic drawing of the focused electron beam induced deposition. (b) A Fokke and Sukke cartoon. Reproduced with permission of Reid, Geleijnse & Van Tol. (c) The cartoon in panel (b) written on an electron-transparent
PDF
Album
Full Research Paper
Published 20 Dec 2017

Synthesis of [{AgO2CCH2OMe(PPh3)}n] and theoretical study of its use in focused electron beam induced deposition

  • Jelena Tamuliene,
  • Julian Noll,
  • Peter Frenzel,
  • Tobias Rüffer,
  • Alexander Jakob,
  • Bernhard Walfort and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 2615–2624, doi:10.3762/bjnano.8.262

Graphical Abstract
  • beam induced deposition (FEBID) is a cost efficient direct resist-free chemical vapor deposition technique producing free-standing 3D metal-containing nanoscale structures in a single step on, for example, surfaces of sub-10 nm size using a variety of materials with a high degree of spatial and time
  • O2CCH2OMe− is generated, further following the first fragmentation route. However, at 1.3 eV the initial step is decarboxylation giving [AgCH2OMe(PPh3)], followed by Ag–P and Ag–C bond cleavages. Keywords: DFT; DSC; FEBID; silver(I) carboxylate; solid-state structure; TGA; Introduction Focused electron
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precursor Fe
  • ; electron beam induced deposition; focused electron beam induced processing; iron pentacarbonyl; nanofabrication; Introduction Carbon nanotubes (CNTs) have attracted enormous interest due to their potential as functional building blocks in applications such as molecular electronics, sensors and energy
  • . In the present work, we used the so-called electron beam induced deposition (EBID) method as the FEBIP technique in which adsorbed precursor molecules are locally dissociated by the impact of the electron beam and leave a deposit of the nonvolatile dissociation products [16][17][18]. In this regard
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Correction: Modelling focused electron beam induced deposition beyond Langmuir adsorption

  • Dédalo Sanz-Hernández and
  • Amalio Fernández-Pacheco

Beilstein J. Nanotechnol. 2017, 8, 2591–2591, doi:10.3762/bjnano.8.259

Graphical Abstract
  • Dedalo Sanz-Hernandez Amalio Fernandez-Pacheco Cavendish Laboratory, University of Cambridge, JJ Thomson Cambridge, CB3 0HE, United Kingdom 10.3762/bjnano.8.259 Keywords: adsorption isotherm theory; BET model; continuum model; focused electron beam induced deposition; 3D nanoprinting; Langmuir
PDF
Original
Article
Correction
Published 05 Dec 2017

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

  • Jusuf M. Khreis,
  • João Ameixa,
  • Filipe Ferreira da Silva and
  • Stephan Denifl

Beilstein J. Nanotechnol. 2017, 8, 2583–2590, doi:10.3762/bjnano.8.258

Graphical Abstract
  • compounds can be used as a precursor to deposit metals on a surface. The conventional lithography techniques are approaching the limits of spatial resolution [1], therefore it is crucial to search and improve new methods and techniques for future technological requirements. Focused electron beam induced
  • deposition (FEBID) can be considered an assisted chemical vapour deposition (CVD) technique. However, in the former case the organometallic precursor is not fragmented by thermal energy but instead by a high-energy electron beam. The precursor molecules are delivered to the substrate in the gas phase and
PDF
Album
Full Research Paper
Published 04 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID). Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be
  • direct writing of purer gold nanostructures that can enable their future use for demanding applications. Keywords: FEBID; gold nanostructures; oxygen plasma; postdeposition purification; Introduction Focused electron beam induced deposition (FEBID) is an additive direct-write method for making complex
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

  • Julie A. Spencer,
  • Michael Barclay,
  • Miranda J. Gallagher,
  • Robert Winkler,
  • Ilyas Unlu,
  • Yung-Chien Wu,
  • Harald Plank,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2017, 8, 2410–2424, doi:10.3762/bjnano.8.240

Graphical Abstract
  • from PtCl2 deposits created from cis-Pt(CO)2Cl2 by focused electron beam induced deposition (FEBID) is evaluated. Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDS) measurements as well as thermodynamics calculations support the idea that electrons can remove chlorine from
  • of AO restricts its effectiveness as a purification strategy to relatively small nanostructures. Keywords: atomic hydrogen; atomic oxygen; electron beam processing; focused electron beam induced deposition (FEBID); purification; Introduction Focused electron beam induced deposition (FEBID) has
  • Me2Au(tfac) with co-deposition of water vapor resulted in Au FEBID nanostructures with the highest conductivity achieved to date (resistivity of 8.8 μΩ cm, compared with 2.2 μΩ cm for pure Au [12]). Another recent purification method is laser-assisted electron beam induced deposition (LAEBID) [24
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • /bjnano.8.237 Abstract We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds
  • attachment; dissociative ionization; electron beam induced deposition; low-energy electrons; silacyclohexane; Introduction Focused electron beam induced deposition (FEBID) [1][2] is a 3-D direct writing method suitable for the fabrication of nanostructures, even on non-planar surfaces. This approach is in
  • many ways complementary to current mask-based lithography methods and has high potential in areas where these are not applicable. Focused electron beam induced deposition is based on the exposure of precursor molecules, physisorbed on a substrates surface, to a narrowly focused high-energy electron
PDF
Album
Full Research Paper
Published 10 Nov 2017

Dissociative electron attachment to coordination complexes of chromium: chromium(0) hexacarbonyl and benzene-chromium(0) tricarbonyl

  • Janina Kopyra,
  • Paulina Maciejewska and
  • Jelena Maljković

Beilstein J. Nanotechnol. 2017, 8, 2257–2263, doi:10.3762/bjnano.8.225

Graphical Abstract
  • [1][2][3]. However, they also play an important role in nanotechnology. In fact, a number of organometallic complexes, originally designed for chemical vapor deposition (CVD) purposes, have also been recognized as promising precursors for focused electron beam induced deposition (FEBID), a process to
PDF
Full Research Paper
Published 30 Oct 2017

Comprehensive investigation of the electronic excitation of W(CO)6 by photoabsorption and theoretical analysis in the energy region from 3.9 to 10.8 eV

  • Mónica Mendes,
  • Khrystyna Regeta,
  • Filipe Ferreira da Silva,
  • Nykola C. Jones,
  • Søren Vrønning Hoffmann,
  • Gustavo García,
  • Chantal Daniel and
  • Paulo Limão-Vieira

Beilstein J. Nanotechnol. 2017, 8, 2208–2218, doi:10.3762/bjnano.8.220

Graphical Abstract
  • of relevance to estimate neutral dissociation cross sections of W(CO)6, a precursor molecule in focused electron beam induced deposition (FEBID) processes, from electron scattering measurements. Keywords: cross sections; density functional theory (DFT) calculations; focused electron beam induced
  • *-orbitals, which play a significant role in the stability of carbonyl complexes, and in particular for W(CO)6 where the tungsten oxidation state is zero. W(CO)6 is a precursor molecule used in electron beam induced deposition (EBID) to produce well-defined tungsten-containing nanostructures [21][22
  • initio molecular dynamics simulations of focused electron beam induced deposition (FEBID) precursor molecules adsorbed on fully and partially hydroxylated SiO2 surfaces [24]. Electron-induced reactions in FEBID processes are initiated by low-energy secondary electrons rather than the high-energy primary
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2017

Modelling focused electron beam induced deposition beyond Langmuir adsorption

  • Dédalo Sanz-Hernández and
  • Amalio Fernández-Pacheco

Beilstein J. Nanotechnol. 2017, 8, 2151–2161, doi:10.3762/bjnano.8.214

Graphical Abstract
  • Dedalo Sanz-Hernandez Amalio Fernandez-Pacheco Cavendish Laboratory, University of Cambridge, JJ Thomson Cambridge, CB3 0HE, United Kingdom 10.3762/bjnano.8.214 Abstract In this work, the continuum model for focused electron beam induced deposition (FEBID) is generalized to account for multilayer
  • deposition; 3D nanoprinting; Langmuir model; Introduction Focused electron beam induced deposition (FEBID) is a direct-write nanolithography technique, based on the local decomposition of gas molecules adsorbed on a substrate and induced by the interaction with a focused beam of electrons [1][2][3]. FEBID
  • types of growth regimes are possible for FEBID under no diffusion, resulting into four types of adsorption isotherms. We propose the use of these maps as a powerful tool for the analysis of FEBID processes. Keywords: adsorption isotherm theory; BET model; continuum model; focused electron beam induced
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Oct 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID). The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM) experiments
  • . Keywords: cobalt nanostructures; electron holography; focused electron beam induced deposition; magnetic deposits; magnetic resonance force microscopy; Introduction Through the local decomposition of magnetic precursor molecules by the action of an incoming electron beam, a wide range of functional
  • magnetic nanostructures have been produced in last years by the focused electron beam induced deposition (FEBID) technique [1][2]. The extensive list of nanostructures includes: (a) planar deposits in the shape of Hall bars for sensing purposes [3][4][5][6]; (b) magnetic nanopillars for functionalization
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • produced by focused electron beam induced deposition (FEBID) [6], photo-lithography (PL), or micro-contact printing (μCP) [7]. However, the purity of the deposits from FEBID is generally low, and PL and μCP require complicated processes including the fabrication of masks or masters, exposure or stamping
PDF
Album
Full Research Paper
Published 26 Jul 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • , grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration
  • : additive manufacturing; beam induced processing; 3D printing; direct-write; electron beam induced deposition; microscopy; nanofabrication; pulsed laser; purification; rapid prototyping; Introduction The first fully incorporated 3D transistor logic was reported in 2012 [1]. Further 3D device concepts and
  • of success. Recently, electron beam induced deposition (EBID) was extended to 3D nanoscale mesh geometries [11]. Deposition occurs during EBID as the nanoscale focused electron beam dissociates adsorbed precursor molecules. A condensed byproduct accumulates by prolonged electron exposure with the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

  • Julia Körner,
  • Christopher F. Reiche,
  • Thomas Gemming,
  • Bernd Büchner,
  • Gerald Gerlach and
  • Thomas Mühl

Beilstein J. Nanotechnol. 2016, 7, 1033–1043, doi:10.3762/bjnano.7.96

Graphical Abstract
  • individual nanotube was picked from a forest of FeCNTs grown by chemical vapor deposition [10] by a Kleindiek micromanipulator and placed at the free end of the cantilever. Electron beam-induced deposition of amorphous carbon on the contact point between FeCNT and cantilever ensures a strong attachment of
PDF
Album
Full Research Paper
Published 18 Jul 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • electron beam induced deposition (FEBID) [1][2] solid materials are produced on surfaces through decomposition of volatile precursor compounds under the electron beam [1][3][4]. As an alternative to deposition from the gas phase, FEBID has recently also been performed in micrometer-thin films of molten
  • contamination. The reduction of the material under high-vacuum conditions also offers the perspective of adding capping layers in situ via an electron-beam induced deposition process from the gas phase [1] thus addressing the problem of Cu oxidation [52]. (a) Representative RAIR spectra of surface-grown copper
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Correction: Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1935–1936, doi:10.3762/bjnano.6.196

Graphical Abstract
  • nanocrystals; focused electron beam induced deposition (FEBID); post-growth annealing of Cu–C material; In Figure 8 of the original article, the scale of the ordinate was wrong. The correct figure looks as follows: Figure 8 in the original article: Calculated resistivity from the resistance measurement of a
PDF
Album
Original
Article
Correction
Published 21 Sep 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • ; focused electron beam induced deposition (FEBID); low-energy electron-induced fragmentation; neutral dissociation; Review 1 Introduction Focused electron beam induced deposition (FEBID) [1][2][3] is a direct-write method capable of creating nanostructures with potential scientific and industrial
  • and carbon in the deposits remains an open question in these studies. However, as the bulk of the oxygen is bound as CoO, the nitrogen is likely bound as the respective cobalt nitride. Focused electron beam induced deposition of Co(CO)3NO at elevated substrate temperatures [80] leads to a substantial
  • Rachel M. Thorman Ragesh Kumar T. P. D. Howard Fairbrother Oddur Ingolfsson Science Institute and Department of Chemistry, University of Iceland, Reykjavík, Iceland Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA 10.3762/bjnano.6.194 Abstract Focused electron beam
PDF
Album
Review
Published 16 Sep 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • nanoscale. However, in contrast with large-scale 3D printing of plastic or metallic structures, FPBID provides nanomaterials with a wealth of interesting electronic, optical and magnetic properties. Due to this, focused electron beam-induced deposition (FEBID) has experienced a rapid expansion in the
  • nanowires [7]. In the article by Oleksandr Dobrovolskiy and colleagues [8], different postgrowth purification treatments for platinum and cobalt FEBID structures are employed to fine-tune the magnetic properties of heterostructures. A novel application of electron beam-induced deposition of amorphous carbon
PDF
Editorial
Published 09 Sep 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • study in detail the post-growth annealing of a copper-containing material deposited with focused electron beam induced deposition (FEBID). The organometallic precursor Cu(II)(hfac)2 was used for deposition and the results were compared to that of compared to earlier experiments with (hfac)Cu(I)(VTMS
  • conventionally and by laser-induced heating in the scanning electron microscope chamber. Keywords: Cu(hfac)2; Cu nanocrystals; focused electron beam induced deposition (FEBID); post-growth annealing of Cu–C material; Introduction Focused electron beam induced deposition (FEBID) is a direct maskless
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain 10.3762/bjnano.6.136 Abstract Iron nanostructures grown by focused electron beam induced deposition (FEBID) are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and
  • ; focused electron beam induced deposition; iron nanowires; magnetization reversal; magneto-optical Kerr effect; transmission electron microscopy; Introduction The fabrication of magnetic nanostructures in a single lithographic step by focused electron beam induced deposition (FEBID) is currently an
  • nanowires grown by focused electron beam induced deposition (FEBID) has been carried out. It has been found that the coercive field decreases for increasing thickness and width in the range of dimensions studied. In the particular case of HC vs thickness for nanowires with constant width (250 nm
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015
Other Beilstein-Institut Open Science Activities