Search results

Search for "low temperature" in Full Text gives 350 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • Kondo temperature. In a recent study, the thermoelectric properties of a noninteracting QD coupled to massless Dirac fermions have been analyzed using the EOM technique [38]. At low temperature, by tuning the voltage of the metallic gate electrode, this QD system reaches large values of thermopower and
  • for the gapped graphene electrodes within the massless gap scenario. The systems present a high heat-to-electricity conversion efficiency at low temperature, for which the phonon contribution can be neglected [38][39]. The analytical approaches to Kondo physics of magnetic impurities in graphene
  • electrons with spin σ is given by: The occupation number of electrons in the QD has to be calculated self-consistently by applying the spectral theorem. At low temperature and equilibrium, the occupation number is given by: where f(ω) is the equilibrium Fermi function with μα = μ. At low temperature and out
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • . Review Direct translocation through the cell membrane The direct translocation of CPPs through the cell membrane as an energy-independent mechanism and an alternative to endocytosis was suggested after internalization of CPPs was observed at low temperature [23]. As a process which requires no energy
  • , direct translocation is regarded as a single-step process including mechanisms involving the formation of inverted micelles, pores and the ‘carpet’ model [21]. This process can be tested under specific experimental conditions – low temperature, energy depletion and the use of endocytic inhibitors for
  • to be understood. Initial studies indicated a direct translocation across the cellular membrane that bypassed endocytosis and the involvement of specific receptors. Indeed, cationic CPPs were shown to traverse membranes at low temperature and in the presence of metabolic or endocytic inhibitors
PDF
Album
Review
Published 09 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • technology; scalability; Review Introduction During the past decade, organic–inorganic halide perovskites (OIHP) have attracted great interest due to their special merits, including exciting optical properties, outstanding optical tunability and low-temperature solution processability. Recently, OIHPs have
PDF
Album
Review
Published 06 Jan 2020

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • acetone at low temperature, even at room temperature [32]. Hence, with the aim to fabricate a high-performance acetone gas sensor, we prepared hollow spheres of ZnFe2O4 and ZnFe2O4/rGO composites using a one-pot solvothermal method followed by a high-temperature heat treatment process in an inert
PDF
Album
Full Research Paper
Published 16 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • were fabricated at low temperature using two steps, an initial non-vacuum growth by facile spray pyrolysis (USP) at 200 °C, followed by a low-temperature annealing in a non-oxygen containing environment at 170 °C. This process is compatible with existing window glass manufacturing technology. By
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • permitted to achieve coherent coupling to single nuclear spins with ca. 1 kHz resolution [27]. The divacancy in 4H-SiC is a neutral charge state defect with spin S = 1 with 4 ZPLs PL1–PL4, in the range of 1078–1132 nm [34]. The largest PL intensity is 27 kcps [5] at low temperature using a superconducting
  • . The low-temperature macroscopic PL spectra show the ZPLs of VSi and VSiVC and an important enhancement of the VSi and VSiVC PL lines in the region where the pillars are present. It is to be noted that the gap region has also been ion-irradiated, because the irradiation was carried out without mask
  • after the fabrication of the pillars. For excitation at 940 nm the PL spectra of sample 3 shows the activation of the NCVSi emission at low temperature [35] after annealing at a higher temperature (Figure 3). Only sample 3 at 940 nm excitation is shown here, as it is most exemplary for the formation of
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • an alternative top electrode, which we attached by free vacuum deposition. The FM is composed of 32.5% Bi, 51% In and 16.5% Sn and is characterized by a melting point of around 62 °C. It was deposited on the active layer/PFN by drop casting (or doctor blade) at low temperature (≈95 °C) and
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • range for each experiment. Experimental For the experiments we used a custom-designed AFM equipped with a qPlus sensor. The qPlus sensor is a stiff (k = 1800 N/m) self-sensing quartz sensor with a resonance frequency around f0 = 32 kHz. It has enabled unprecedented results in low-temperature AFM, such
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • hand, this temperature difference seems to be large enough to prevent destruction of the framework during the calcination. The low-temperature minimum (first weight loss) is due to dehydration, while the exothermic part in the range 500–900 K can be attributed to the burning-out of the surface hydroxyl
  • and above 600 K. The desorption in the low-temperature range is presumably due to Na+ or K+ cations and weakly basic surface hydroxyl groups [46][47], i.e., the H-bridged Ti–OH–Si (see also Figure 3 of [31]). As a result of the post-synthetic treatment by H2O2, a decrease of the desorption peak in
  • activity compared to the parent titanosilicate. The basicity probed by CO2-TPD exhibited two peaks for Na,K-ETS-10 that were assigned to the Na,K-cations as weak Lewis bases in the low-temperature region and to the strong Brønsted basic oxygen atoms coordinated as Si–O–Ti in the framework. The application
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • immediately, especially in the low-temperature region. However, the behavior in the y-direction is considerably different. In Figure 3b, the ZT values along the y-axis are obviously higher for VO3 than in the other two cases at usual working temperatures of 300–600 K. The conclusion is that inducing the O
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • -loaded CeO2–ZrO2–ZnO catalyst has a small heat capacity and dramatically increases the temperature of the Pt coil, resulting in a highly sensitive sensor signal. On the other hand, the n-type Sm2CuO4-loaded CeO2–ZrO2–ZnO catalyst is advantageous when rapid response and low temperature operation are
PDF
Album
Review
Published 16 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • identified in the Mössbauer spectrum of magnetite. Mössbauer spectroscopy is a highly sensitive method with respect to the valence of iron ions in these bulk oxides, since the hyperfine parameters corresponding to Fe3+ and Fe2+ ions are well distinguishable in the spectra. For the processing of the low
  • -temperature Mössbauer spectra of uncoated MNPs, a model consisting of two magnetic components (sextets) was used (Figure 6). Each sextet corresponds to nonequivalent states of iron ions in the A- and B-sites. The values of the magnetic hyperfine field, Hhf, in the sextets were described by certain
PDF
Album
Full Research Paper
Published 02 Oct 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • solution and the type of polymer. On the other hand, ALD is a novel metal oxide deposition process with excellent thickness control due to its low temperature processing and separated superficial reactions between precursor materials. Precursors are pulsed one by one over a substrate in the chamber and
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • ambient air exposure. Additionally, the impact of low temperature annealing (230 °C) in UHV is presented. After the venting of the vacuum chamber, the TiO nanowires still had a much higher work function than the SrTiO3(100) surface; however, the absolute values for both materials increased. It is widely
PDF
Album
Full Research Paper
Published 02 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • in size. The average pore diameter, estimated from the data of low-temperature nitrogen adsorption, was 50 nm (Figure 2f). In the ZnO/SiC nanocomposites (Figure 2e), formed from ZnO nanofibers and SiC powder by mixing components in a single homogeneous paste with subsequent annealing at 550 °C, the
  • nanofibers was estimated from the broadening of the (100) ZnO and (111) 3C-SiC XRD peaks using the Scherrer formula. The measurements of the specific surface area (SBET) and analysis of the porosity of the samples were carried out by the method of low-temperature nitrogen adsorption on an ASAP 2010
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • concentrated ferrofluid (φ = 0.094) consisting of quasi-ellipsoidal magnetite nanoparticles of average magnetic volume of 4.3 × 10−25 m3 dispersed in transformer oil, with a spontaneous magnetization Ms = 4.5 × 105 A m−2, as determined by DC low temperature magnetometry and an effective anisotropy energy
PDF
Album
Full Research Paper
Published 24 Jun 2019

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • surfaces [13][14][15][16][17][18][19][20][21]. Low-temperature STM/STS is an ideal tool to study the Kondo effect, which manifests itself by a sharp zero-bias resonance in the conductance spectrum of a localized moment on a conducting substrate, due to the coherent spin-flip scattering between the
  • interesting in connection with thermopower applications. Ultimately, a better understanding of the interactions of the molecules with their environment has been achieved. Experimental Experiments were performed in a UHV system with a base pressure p < 10−10 mbar, equipped with a low-temperature scanning
PDF
Album
Full Research Paper
Published 19 Jun 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • and Figure S8B, Supporting Information File 1) are largely superimposable with a slight increase of the low-temperature component only. On the other hand, the TPO profile of the spent CTF4 presents (see Figure 2A, after 40 h on stream and Figure S8A, Supporting Information File 1) an evident peak
  • enlargement due to a non-negligible formation of low-temperature carbon deposits (coke). These results mirror the different catalytic behaviour of the two CTF systems at work in DDH and highlight the higher stability of the highly basic and open-cell-structured CTF5 sample under operative conditions
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • confirm the high crystalline quality of the produced NPs. We pursued our investigations by plotting the variation of the magnetization of these particles as a function of the magnetic field at RT, typically T = 300 K (Figure 6). Low-temperature (T = 10 K) hysteresis behavior is not reported, as it is
  • temperature range of 10–400 K under a magnetic field of 400 Oe. The magnetization as a function of the magnetic field M(H) was also recorded at low temperature (10 K) and room temperature (300 K) cycling the magnetic field between −70 kOe and +70 kOe. A sampling tube made from a specific pod from Quantum
PDF
Album
Full Research Paper
Published 04 Jun 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • temperature on the initial electrical characteristics and photo-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). The extracted electrical parameters from transfer curves suggest that a low-temperature treatment maintains a high density of defects in the IGZO
  • bulk, whereas high-temperature annealing causes a quality degradation of the adjacent interfaces. Light of short wavelengths below 460 nm induces defect generation in the forward measurement and the leakage current increases in the reverse measurement, especially for the low-temperature-annealed device
  • . The hysteresis after negative-bias-illumination-stress (NBIS) is quantitatively investigated by using the double-scan mode and a positive gate pulse. Despite the abnormal transfer properties in the low-temperature-treated device, the excited holes are identically trapped at the front interface
PDF
Album
Full Research Paper
Published 27 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • energy for the QD [48] and QW [49] can be calculated as: where Eg is the CIS low-temperature bandgap energy, h is the Planck constant, me is the effective conduction-band mass, mh is the effective valence-band mass, e is the rest electron charge, ε is the CIS dielectric constant and Ex is the exciton
  • PL spectrum of a CdS layer deposited on top of a glass covered with a Mo layer is shown for comparison. (c), (d), and (e) show, for each sample, the broad band CIS-related emission superimposed on the Si-related peaks. The dashed line indicates the bulk bandgap of CIS at low temperature. Simulated
PDF
Album
Full Research Paper
Published 22 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • -based solidly mounted resonators (SMR) using a low-temperature chemical vapour deposition (CVD) process assisted by Ni catalysts, and its effective bio-functionalization with antibodies. The SMRs are manufactured on top of fully insulating AlN/SiO2 acoustic mirrors able to withstand the temperatures
  • of their characteristics and then functionalized to manufacture gravimetric biosensors, which eliminates the need to use complex transfer methods. Defect-free few-layer graphene was selectively grown through a low-temperature (650 °C) CVD process on Ni [16] thin-film catalysts previously evaporated
  • graphene layers were directly deposited on the resonators through a relatively low-temperature LPCVD process that allowed for the preservation of the integrity of the whole multi-layered structure as well as its electrical response. The graphene-covered resonators were tested as biosensors for the
PDF
Album
Full Research Paper
Published 29 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • low temperature, not higher than 350 °C) allows nanoparticles to be produced with good control of size and crystallinity in large scale (i.e., tens of grams), much more than can be provided by conventional chemical approaches (usually limited to 100–300 mg). Therefore this method can be easily
  • constant (its value, β = 1–2, depends on the TB distribution) [29][30]. Finally, the FC curves show an almost temperature-independent low-temperature trend, with even a low temperature negative slope for sample C0 below Tmax: this behaviour indicates the presence of interparticle interactions bringing the
  • system in a collective state with higher anisotropy at low temperature [31][32][33]. For sample C0, where a strong interacting regime is expected, magnetization dynamics of superspin has been investigated. The in phase component (χ’) shows a peak at a temperature Tp that confirms the DC magnetization
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • conversions of 4% MnO2–CuO–Fe2O3/CNTs catalyst of 43.1–87.9% at 80–180 °C were achieved, which was ascribed to the generation of amorphous MnO2, CuO and Fe2O3, and a high surface-oxygen (Os) content. Keywords: amorphous materials; carbon nanotubes; low-dimensional materials; low-temperature catalysis; SCR
  • ) of the Mn–Cu–FeOx/CNTs-IWIM catalyst appear at lower energies than those of 4% MnO2–CuO–Fe2O3/CNTs catalyst, revealing the formation of Fe3O4 [35]. Moreover, the absence of any satellites further proved the presence of Fe3O4. It is noteworthy that Fe2O3 exhibits a better low-temperature SCR activity
  • % at 180 °C during a test of 6 h, revealing the outstanding long-term stability. In view of the above favorable properties, the 4% MnO2–CuO–Fe2O3/CNTs catalyst will be potentially applicable in the low-temperature NO reduction with NH3. Comparison of the catalytic performance of three catalysts Table 1
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019
Other Beilstein-Institut Open Science Activities