Search results

Search for "plasmas" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • overview of the properties and applications of the produced NPs. Keywords: low-pressure plasmas; magnetron; nanoparticles; nanoparticle formation; sputtering; sputtering onto liquids; Introduction According to the general terminology, nanoparticles (NPs) are objects that have a size of less than 100 nm
  • plasmas and plasma–surface interactions. For this reason, we first briefly introduce the theoretical background of plasma-based sputtering and a short overview of the formation of metal NPs in liquid media. This critical review aims to describe the scientific state of the art of SoL and to eliminate the
  • the target surface chemistry and the ISEE change. Besides, once the poisoned regime is reached, compound molecules can be sputtered as demonstrated by mass spectrometry analysis of the plasma ion chemistry during the reactive sputtering of Ti in Ar/N2 [63] or in Ar/O2 plasmas [64]. In these
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • large-scale fabrication at low cost is an important issue in further enhancing the use of SERS for routine chemical analysis. Here, we systematically investigate the effect of different radio frequency (rf) plasmas (argon, hydrogen, nitrogen, air and oxygen plasma) as well as combinations of these
  • plasmas on the surface morphology of thin silver films. It was found that different surface structures and different degrees of surface roughness could be obtained by a systematic variation of the plasma type and condition as well as plasma power and treatment time. The differently roughened silver
  • modification in industry [63][64]. A large variety of plasmas exist depending on the excitation source, the operating pressure and the device geometry [63][65]. Advantages of the use of a radio frequency (rf) plasma for chemical modification is that no hazardous chemicals and solvents are involved. Moreover
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • plasmas with 110 nm diameter SiO2 spheres being used as etch mask. Tuning the ratio of the HBr/O2 plasmas allowed for vertical nanowires with variable sidewall tapering angle (see details in Experimental section and Figure S1, Supporting Information File 1). Vertical nanocones (height ≈ 720 nm, top
  • rinsed with deionized water. Then 2–3 μL of 110 nm diameter SiO2 spheres dispersed in ethanol were drop-cast on the clean silicon samples and annealed for 1 min at 60 °C on a hot plate. The samples were etched with a combination of plasmas (PlasmaPro 100 Cobra ICP Etch). First Cl2 (20 sec, 50 sccm, HF
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • ]. Post-synthesis treatments such as cold plasmas and ion implantation emerge as versatile options to engineer nanostructured carbon materials with different elements [80]. These techniques allow for high dopant concentrations (about 10 atom %) and for the design of different architectures adjusting the
PDF
Album
Review
Published 18 Jul 2018

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • and assuming a homogenous resistivity of the electrolyte; for further details see Supporting Information File 1. Note the following in this context: The applied RIE processes involving CHF3/CF4 plasmas have a propensity for the formation of Teflon-like CF layers which, by influencing the wettability
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • about that time [7][8][9][10]. The phenomenon was earlier considered as unwanted and as something to be avoided; later, it laid a foundation for the field of dusty plasmas in which the research was focused on particle–plasma interactions [11]. A legacy from the semiconductor processing phase explains
  • the fact that close attention was paid to silane-based plasmas [9][11][12][13][14][15][16][17][18][19][20][21][22] followed by hydrocarbon [16][17][23][24][25][26][27] and fluorocarbon plasmas [27][28][29][30][31][32][33][34][35][36]. Gas aggregation sources In recent years, scientific interest spread
  • nucleating, growing and passing through the zone of the glow discharge. Clouds of charged NPs may exhibit collective behaviour coupled with plasma instabilities, a phenomenon of high scientific interest in the field of dusty plasmas [52]. In the framework of GAS, the gas flow conditions are deliberately
PDF
Album
Review
Published 25 Sep 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • smaller and lighter radicals and ions are produced. These ions cause less damage compared to the larger ones produced in low power plasmas. Comparing the effect of the treatment duration, an increased production of defective sites is observed for short plasma treatment: under this condition a lower
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • the effect of the key process parameters such as deposition temperature, discharge power and distance from plasma source to substrate on the catalyst-free growth of VGNs in microwave plasmas. A direct evidence for the initiation of vertical growth through nanoscale graphitic islands is obtained from
  • , catalysis and energy storage. Keywords: activation energy; plasmas; residual stress; vertical graphene nanosheets; wettability; Introduction Vertical graphene nanosheets (VGNs) consist of interconnected 3D porous networks of vertically oriented graphitic sheets, which are aligned perpendicularly to the
  • nanostructures in plasmas are C2 and CH, as well as atomic and molecular hydrogen [26]. The rapid nucleation of nanoislands, self-organization and coalescence between them take place through direct adsorption and surface diffusion of carbon-containing species on the substrate surface [24]. Hence, the commonly
PDF
Album
Full Research Paper
Published 10 Aug 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • plasmas. To condense the silanol groups (Si–OH) in the resist into siloxane bonds (Si–O–Si) and form cross-linked networks, the resist was heated to 110 °C for different times while pressing with the stamp. Thereafter, the resists with inverted pyramidal pits were heated to different annealing
PDF
Album
Letter
Published 12 May 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • -level Zn 2p and O 1s XPS spectra of pristine (A) ZnO NCs and ZnO NCs after 25 min treatment in (B) H- and (C) O-plasmas. Measured spectra are presented with black lines, while their corresponding fitted envelopes are presented in red. The individual contributions of different functional groups present
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment

  • Ann-Kathrin Kleinschmidt,
  • Lars Barzen,
  • Johannes Strassner,
  • Christoph Doering,
  • Henning Fouckhardt,
  • Wolfgang Bock,
  • Michael Wahl and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2016, 7, 1783–1793, doi:10.3762/bjnano.7.171

Graphical Abstract
  • pressure of the etching system is about (1–5) × 10−6 hPa, while the pressure during the etch process is about (1–2) × 10−2 hPa. Chlorine based plasmas are commonly used for dry-etch processes of III–V semiconductors [23][24][25][26][27][28]. In our case 2 vol % of chlorine (1 sccm in 50 sccm argon) suffice
PDF
Album
Full Research Paper
Published 21 Nov 2016

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • . For that purpose, the organic matrix is completely removed by exposure to oxygen and hydrogen plasmas while, in parallel, the precursors are reduced into the metallic state to form NP. The reliability of the approach has been demonstrated previously for colloidal [1][2] as well as micellar [3][4][5][6
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013

Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

  • Cathy Bugot,
  • Nathanaëlle Schneider,
  • Daniel Lincot and
  • Frédérique Donsanti

Beilstein J. Nanotechnol. 2013, 4, 750–757, doi:10.3762/bjnano.4.85

Graphical Abstract
  • ·{In2S3} + 2·O2 plasma have similar properties, show the critical role of activated oxygen during the deposition of In2(S,O)3. Commonly existing species in oxygen plasmas are atomic oxygen that is created from molecular oxygen dissociation, excited oxygen species at different electronic levels, ionized
PDF
Album
Full Research Paper
Published 13 Nov 2013

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • theoretical [15], and experimental works focused on the chemisorption of atomic hydrogen [16][17][18][19][20]. A new research focus is the investigation of hydrogen-containing plasmas with graphitic surfaces [5][21]. Particularly the work of Elias et al. is interesting, in which graphane growth was claimed
PDF
Album
Full Research Paper
Published 13 Dec 2012

Formation of SiC nanoparticles in an atmospheric microwave plasma

  • Martin Vennekamp,
  • Ingolf Bauer,
  • Matthias Groh,
  • Evgeni Sperling,
  • Susanne Ueberlein,
  • Maksym Myndyk,
  • Gerrit Mäder and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 665–673, doi:10.3762/bjnano.2.71

Graphical Abstract
  • synthesis by means of DC thermal [6], inductive [7][8] or low-pressure microwave plasmas [9]. Even though the plasma synthesis of several materials has been investigated [10][11][12][13][14][15][16][17], only a limited number of experiments have been performed on the synthesis of nanoparticles in an
PDF
Album
Video
Full Research Paper
Published 07 Oct 2011

Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

  • Debashis De,
  • Sitangshu Bhattacharya,
  • S. M. Adhikari,
  • A. Kumar,
  • P. K. Bose and
  • K. P. Ghatak

Beilstein J. Nanotechnol. 2011, 2, 339–362, doi:10.3762/bjnano.2.40

Graphical Abstract
  • , characterizing the screening of the Coulomb field of the ionized impurity centers by the free carriers. It affects many special features of the modern semiconductor devices, the carrier mobility under different mechanisms of scattering, and the carrier plasmas in semiconductors [23]. The DSL (LD) can, in general
PDF
Album
Full Research Paper
Published 06 Jul 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • conditions. Thus, much effort has been spent on the removal of organic cover layers leading to naked particles on a support and subsequent reduction of NPs to yield, ultimately, purely metallic species [32][33]. It was shown that subsequent processing by oxygen and hydrogen plasmas is the key to obtain
  • via salt-loaded reverse micelles has been successfully performed on various types of substrates – dielectric and metallic, single crystalline and amorphous – some further restrictions related to their materials should be mentioned. First of all, to obtain NPs exposure to oxygen and/or hydrogen plasmas
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities