Search results

Search for "sunlight" in Full Text gives 73 result(s) in Beilstein Journal of Nanotechnology.

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • considered the most extensively studied solid among the diverse transition-metal oxides and transition-metal chalcogenides investigated with that focus over the last decades. However, TiO2 has disadvantages such as limited activity together with a reduced sensitivity to sunlight. Hence, alternative
PDF
Album
Review
Published 31 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • earlier studies [42] that 2D materials can display a much larger sunlight absorption than commonly employed semiconductors. Also, the materials studied here can be employed in heterostructures to complement or replace other large-bandgap 2D materials, such as hexagonal boron nitride, or to dissociate
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • 13CH3OH, respectively. The photoreduction mechanism of CO2 to HCHO in the presence of the GCN-5 catalyst under visible light illumination is shown in Figure 13. The CN QDs absorb visible wavelengths of sunlight due to their appropriate band edge potential value, thus exciting the electrons. These excited
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material

  • Lars Kool,
  • Anton Bunschoten,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2019, 10, 442–447, doi:10.3762/bjnano.10.43

Graphical Abstract
  • cups using AuNP–PVA material showing the dichroic effect in artificial and sunlight. Supporting Information Supporting Information File 49: Supporting information for aspect ratio of AuNPs, UV–vis and TEM analyses of AuNPs and AuNP-PVA nanocomposites, pictures of AuNP-PVA 3D-printed cups and their
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2019

Development of an anti-pollution coating process technology for the application of an on-site PV module

  • Sejin Jung,
  • Wonseok Choi,
  • Jung Hyun Kim and
  • Jang Myoun Ko

Beilstein J. Nanotechnol. 2019, 10, 332–336, doi:10.3762/bjnano.10.32

Graphical Abstract
  • external surface pollutants, such as dust, yellow dust, animal excrement and rainfall sediment. These pollutants prevent sunlight from entering the PV modules and thereby degrade the power generation efficiency. Therefore, various studies have been conducted of late to effectively prevent the surface
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2019

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • solar cell, completely covering the photoactive area. Considering a practical use of the cell under sunlight, photoelectric measurements were conducted under AM1.5 solar irradiation. A bare a-Si:H solar cell without UC nanorods but with otherwise the same cell structure was used as reference. In Figure
PDF
Album
Full Research Paper
Published 31 Oct 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • ][14][15][16][17]. Dual-bandgap Co3O4 films provide distinct band states in the energy–momentum diagram, which is advantageous to reduce the thermalisation-related losses in the sunlight-driven hydrogen generation. Dual bandgaps in Co3O4 originate from the crystal-field split Co 3d states at the
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • established. However, the conventional wastewater treatments are usually accompanied by high cost, low efficiency and other insufficiencies [2]. The decomposition and mineralization of pollutants under sunlight through photocatalysis has been demonstrated to be an effective and green technology for
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • population remind us of the importance of finding new, clean pathways to cover our energy needs. Fuel generation from renewable energy resources could be one of the “clean” approaches for meeting our energy requirements. Although, sunlight is the most abundant source of green energy, its long-term storage is
  • light absorption and conversion to chemical energy take place. The photo-electrodes are in contact with an electrolyte that is the primary source of fuel together with the sunlight. In such a system, light absorption by the electrodes leads to the creation of electron–hole pairs, which after their
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • photoreduction of Cr(VI) under sunlight illumination [143]. Its enhanced photoreduction capacity over TiO2 nanosheets, P25 and CD–P25 was attributed to the better charge transfer as well as higher light absorption properties of CDs. The in situ formation of H2O2 promotes the photoactivity to a great extent
  • %. Photocatalytic reduction of chromate ions under sunlight over CuBi2O4/TiO2 has also been reported by Lahamar et al. A remarkable performance of 98% reduction is obtained in less than 4 h for a Cr(VI) concentration of 30 mg L−1 at pH ≈4 by using 1 g L−1 catalyst. The kinetics of chromate photoreduction is well
PDF
Album
Review
Published 16 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • ]. However, achieving high efficiency for photocatalytic conversion under natural sunlight irradiation is still a great challenge because many catalysts only respond to ultraviolet (UV) light [5][12]. Exploring photocatalysts that can be driven by visible light, which comprises 43% of solar energy, is
  • photocatalytic performance for dye degradation under light irradiation [30][31][36][37]. Unfortunately, due to its wide bandgap of about 3.1 eV, Ag2WO4 has limited photocatalytic activity under sunlight, which severely limits its application and illustrates the urgency for optimization of Ag2WO4 to overcome
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • dynamic stability of the compounds, which is inferred by analyzing their vibrational normal mode. SiAs2 and GeAs2 monolayers possess a bandgap of 1.91 and 1.64 eV, respectively, which is excellent for sunlight harvesting, while the exciton binding energy is found to be 0.25 and 0.14 eV, respectively
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • human, animal, and plant activities by blocking and scattering the sunlight. The volcanically erupted particles may possess heavy metals that are toxic to humans [69]. The short-term effects of particles from volcanic eruptions include nose, throat, eye and skin irritations and bronchial symptoms, while
PDF
Album
Review
Published 03 Apr 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • and reasonably fast response/recovery time were reported for a gas sensor based on Au-decorated ZnO structures. The highest selectivity towards NO2 was compared to other combustion gases such as CO, and C3H8. In addition, the photocatalytic decomposition of organic dyes under sunlight using PL
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of
  • promising amalgamated g-C3N4–SrTiO3 photocatalyst by a simple thermal method. The as-prepared composites showed exceptional properties for photocatalytic degradation of bisphenol A (BPA) under intense sunlight due to the enhanced migration of photogenerated charges over the close interfacial connections
  • rhodamine B (RhB) dye under UV, visible and natural sunlight irradiation. Also, the degradation of a non-photosensitizing colorless pollutant, BPA, was also studied under sunlight to eliminate the doubt of RhB photosensitization in the photocatalytic activity. The CTCN heterojunction offers enhanced light
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • , Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul, South Korea Institut für Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany 10.3762/bjnano.9.59 Abstract The utilisation of sunlight as an abundant and renewable resource has motivated the development of
  • issues [45][46][47][48][49]. Synthesis routes such as sol–gel, hydrothermal, microwave hydrothermal, impregnation, electrochemical deposition, chemical deposition, deposition-precipitation, UV photodeposition and direct sunlight photodeposition have been reported [23][50][51][52][53][54][55][56][57][58
  • . Moreover, researchers have proven the possibility of using direct sunlight as an alternative to artificial UV light for such noble metal deposition. In a study by Leong and co-workers, they successfully achieved the deposition of Ag and Pd onto the surface of TiO2 via this renewable route. They also used
PDF
Album
Review
Published 19 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • superoxide anion radical (O2•−) and holes (h+) after performing multiple scavenging tests. Keywords: carbon dots; g-C3N4; photocatalytic degradation; sugarcane juice; sunlight; Introduction Carbon dots (CDs) predominantly consist of amorphous carbon together with nanocrystalline regions of sp2-hybridized
  • degradation of endocrine disrupting chemicals (EDCs). Bisphenol A (BPA) was chosen as a model pollutant under natural sunlight irradiation. Herein, the structural and optical properties of samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence
  • ]. Photocatalytic performance under solar irradiation The photocatalytic performance of the composites was evaluated using BPA as a model pollutant under natural sunlight irradiation. Figure 5a shows that the blank was stable with almost no degradation throughout the experiment, indicating BPA had poor photolysis
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • of 5 and 7–18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid
  • not exceed ca. 3 eV to most efficiently use the visible spectral range of the sunlight [6]. As a result, numerous water-splitting catalysts with various efficiencies have been reported [6][7][8][11][12][13]. Because of its bandgap of 3.0–3.2 eV (depending on the crystal structure and particle size [14
  • bandgap of the TiO2 semiconductors [21]. Gallo et al. used amorphous TiO2 doped with Au and/or platinum (Pt) NPs to split water under ultraviolet (UV)-A light and simulated sunlight. Best results with 1.6 mmol/(h·g) of H2 production were obtained with Au0.5Pt0.5/TiO2 catalysts [22]. Chen et al. used
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • utilize sunlight, water and CO2 to synthesize energy-rich carbohydrates [10][11]. The chloroplast is the place where NPS occurs. To clearly introduce this organelle, progressively smaller structures (plant cell, chloroplast, thylakoid membrane) of a general leaf are shown in Figure 1A–D. Each chloroplast
  • (Figure 1C) contains numerous thylakoids. On the thylakoid membrane, the natural light-harvesting antenna complexes, photosystem II (PS II, P680) and photosystem I (PS I, P700), capture the photons and regenerate the coenzyme for carbohydrates synthesis (Figure 1D). However, in APS, sunlight is used to
  • low energy conversion efficiency (typically <1%) to capture sunlight and CO2 for the production of carbohydrates, even after billions of years of evolution, and it is far from its theoretical limit of 30% [48]. This gives great room to develop an improved scientific solution to produce basic food
PDF
Album
Review
Published 04 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • nm. The absorption peak of silver nanoparticles becomes gradually stronger as the content of Ag increases, indicating that the sunlight utilization efficiency increases steadily. During UV irradiation, many defects are formed in AgSCN, including different interstitial sites and vacancies [29]. The
  • to the light irradiation. The degradation was performed under visible-light irradiation by using a halogen lamp (400 W) with a UV cutoff filter (λ ≥ 420 nm). The halogen lamp spectrum is commonly used to simulate the sunlight spectrum, in which the visible light is about 60–80%. An ≈3 mL aliquot was
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %)/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The
  • of rhodamine B (RhB) in aqueous solution. Our results demonstrate that the composite containing 2 wt % CdSe NRs exhibits the optimal photocatalytic activity under solar or visible light irradiation. Moreover, the photocatalytic response was maintained after ten cycles in simulated sunlight. A
  • simulated solar light and ≈70% of RhB is bleached after 6.25 h of irradiation. A similar hypsochromic shift of the absorption band at 553 nm to that observed under simulated sunlight irradiation was observed, indicating that photooxidative N-de-ethylation of RhB occurred in the early stages of its
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • sunlight from the metals, but they can also serve the function of antireflection coating (ARC) films, given proper design of the film thickness. A ZnO thin film with appropriate doping could potentially act as the emitter with a Si substrate base to form a heterostructure solar cell. Therefore, in the most
PDF
Album
Full Research Paper
Published 15 Sep 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • Suneel Kumar Ashish Kumar Ashish Bahuguna Vipul Sharma Venkata Krishnan School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175005, H.P., India 10.3762/bjnano.8.159 Abstract In the pursuit towards the use of sunlight as a
  • way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical
PDF
Album
Review
Published 03 Aug 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • , multicomponent NPs have been also integrated with graphene, but such examples are still very few to date [29]. In a photovoltaic cell, sunlight energy is directly converted to electricity. Graphene and graphene–NP hybrids have been investigated extensively in the field of solar cells because of their unique
PDF
Album
Review
Published 24 Mar 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • , they are active only in UV light (<4% of sunlight) owing to their wide bandgap (3.2 eV), which absorbs photons with wavelengths shorter than 400 nm. Also, TiO2 nanoparticles (NPs) have a low adsorption capacity for hydrophobic molecules, and if they are used for water treatment, severe problems during
  • as that of the inorganic nanoparticles taken alone, as well as the general need of exploitation of the catalysts in several cycles, our composites with simple or hybridized TiO2 NPs seem to be a more suitable solution for water treatment under sunlight. The catalytic performance of the synthesized
  • . The presence of Fe2O3 NPs extended the light absorption of TiO2 into the visible range, a feature that recommends their use in water purification under sunlight. Experimental Materials Titanium(IV) isopropoxide (TTIP), glacial acetic acid, tetraethyl orthosilicate (TEOS), iron(II) chloride
PDF
Album
Full Research Paper
Published 27 Jan 2017
Other Beilstein-Institut Open Science Activities