Search results

Search for "transport" in Full Text gives 720 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • enhancing device efficiency [10][11]. Consequently, the experimental demonstration of the sensitivity of KPFM to the narrower layers can be crucial for the investigation and comprehension of local surface properties and charge transport mechanisms at interfaces [12]. Within this context, this work presents
  • KELSCAN [13], which evaluates the contact potential and surface photovoltage as a function of the position. The Silvaco ATLAS model solves the Poisson equation self-consistently coupled to carrier continuity and transport equations in the well-known drift diffusion model, which is given detail in [22] and
  • not repeated here for brevity. The solution presented in this work assumes ohmic contacts and, therefore, Dirichlet boundary conditions fixing potential and carrier concentrations at the boundaries, as reported in section 3.5 of the SILVACO ATLAS manual. The ATLAS module solves semiconductor transport
PDF
Album
Full Research Paper
Published 14 Jun 2023

Current-induced mechanical torque in chiral molecular rotors

  • Richard Korytár and
  • Ferdinand Evers

Beilstein J. Nanotechnol. 2023, 14, 711–721, doi:10.3762/bjnano.14.57

Graphical Abstract
  • crossover between both regimes. To exemplify our results, we employ a helical geometry. Helical molecular wires have sparked a lot of attention because of reports of spin-selective transport [16][17][18]. This phenomenon falls under the umbrella term “chirality-induced spin selectivity (CISS)”. The full
  • linear response (under the threshold current). A small symmetry breaking is needed in order to discriminate between the three states. Quantum effects are responsible for a rich transport phenomenology of molecular junctions [20]. Here, we pause to discuss quantum effects related to the electronic degrees
  • manuscript will remain valid in the quantum limit. Two quantum aspects are significant in this context: (1) The electron transport process is stochastic, allowing for both transmission and reflection. Particle reflection off the helix can not induce any rotation, unless the following effect is considered. (2
PDF
Album
Full Research Paper
Published 12 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • chemisorption and physisorption at the nanowire interface, which suppress electronic transport inside the p-type semiconductor nanowire but enhance ionic transport in the water layers adsorbed on the nanowire surface. Possible physicochemical processes at the nanowire surface are discussed in line with
  • explained by parallel contributions to the net electrical signal from different conduction paths, for example, electronic and ionic transport inside the material and on the surface [29]. First, the conduction at very low RH is presumed to be primarily due to electronic transport inside the material. The CuO
  • with the adsorbed oxygen and Cu sites on the surface also neutralize holes: [30]. Hence, the impedance can increase with increasing RH (up to about 50% in our system) because of the affected electronic transport inside the material. Simultaneously, as the hydroxy groups begin to form clusters on the
PDF
Album
Full Research Paper
Published 05 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
PDF
Album
Review
Published 01 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • to establish contact with the particles by inertial impaction and capture and transport them to the mouth opening [14][15][16][17][18]. These interactions (i.e., making contact with and handling of or manipulating particles) were previously documented in detail through observation under a binocular
  • than the meshes of the sieve [14][29][30][31][32][33][34][35][36]. Additionally, the mechanical property gradients of the setae, with soft bases or soft tips, seem to play a role [25][37][38]. All of the abovementioned parameters influence the capability of the setae to capture and transport the
  • short setae collect them and transport them into the goal. However, when the adhesion is too strong, the food particles continue to follow the setae, even after their appearance in the vicinity of the short setae, and almost never enter the mouth. We additionally altered the degree of adhesion in more
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • completely understood. The behaviour of the conductance is examined as kinks of varying angular intensity are included into nanowires. The effects on thermal transport are evaluated through molecular dynamics simulations, phonon Monte Carlo simulations and classical solutions of the Fourier equation. A
  • detailed look is taken at the nature of heat flux within said systems. The effects of the kink angle are found to be complex, influenced by multiple factors including crystal orientation, details of transport modelling, and the ratio of mean free path to characteristic system lengths. The effect of varying
  • Fourier model. Keywords: ballistic transport; kinked nanowire; molecular dynamics; phonon Monte Carlo; thermal transport; Introduction The thermal conductivity of semiconductor nanostructures is of great interest because of potential applications in a wide variety of fields, such as thermal control
PDF
Album
Full Research Paper
Published 15 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • improved transport of nutrients and metabolites across the material. The FE-SEM images in Figure 2C and Figure 2D show the same microorganism cells but previously encapsulated in yolk–shell microstructures. They are arranged differently from those immobilized freely in the silica gel substrate. In the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • the advantage that the π electrons delocalized over the conjugated backbone enhance the carrier transport and provide multifunctional properties by combining their intrinsic optoelectronic properties and macromolecular physical properties. Typical polymeric PTMs used for the SSG include polypyrrole
  • ratio, high porosity, and high mass transport. Therefore, they are often applied to SSG absorbers along with other macrostructures such as membranes and foams [29][52][53][54][55]. One noticeable example is the study of nanofiber-based light-trapping coatings [29]. Ma et al. proposed an ultrasonic spray
  • applied on top of the PS insulator without the need for an additional water transport layer. Membranes Janus structural membranes with hydrophilic and hydrophobic surfaces are key structures for highly efficient SSGs. Such Janus membranes can be easily produced by filtering or coating hydrophilic
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • structure, magnetism, and charge and spin transport, are very interesting for nanoscale physics. In particular, nanostructures with zigzag edges are expected to have spin-polarized electronic edge states. The synthesized structures could play a leading role in graphene-based spintronics. In addition to
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • OER catalyst of Gr/NiFe layered double hydroxide (LDH) was chemically fabricated on a GCE. The catalyst revealed an OER Eonset of 1.48 V vs RHE and η of 250 mV determined in 0.1 M KOH. Improved electron transport was provided by the graphene material in the catalyst structure. Enhanced OER catalytic
  • transport. The latter can also be confirmed by the Tafel slope analysis. The slopes for NiFe(300 mC)-GO begin to rise quickly, which indicates a change in the OER kinetics due to the slowed exchange of ions and electrons. The connection of GO with NiFe resulted in a slight increase of the value of Cdl/ECSA
  • of the catalyst surface and the ion and electron transport became inhibited. The value of Cdl/ECSA for NiFe-GO(100–300 mC) progressively increased as the deposition charge of GO in NiFe-GO increased, which was a different trend compared to NiFe(50–300 mC)-GO. Because of this, the data indicate that
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • present in plants such as onions, soybeans, lettuce, apples, red grapes, broccoli, and tomatoes [17]. It is also a naturally forming polar auxin transport inhibitor [18]. Various biological and pharmacological properties of quercetin have been reported, including antiviral, antibacterial, antimicrobial
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • experimental setups [1][30][35]. The proper use of transport inhibitors requires stringent controls to substantiate their effects and to rule out artifacts. Typically, this requires the use of appropriate markers that have been extensively validated to be specifically internalized by particular pathways
  • mid-size molecular probes that bind and associate nonspecifically (structural adsorption, intercalation, or backbone interactions) or through explicit interactions with specific NAT residues [56]. Ultimately, the particulate structure of these systems can result in transport constraints into and
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • nanoparticles functionalized with the antibody 8D3. Afamin facilitates the transport of vitamin E to the central nervous system. When the nanoparticles were loaded with a drug, apolipoproteins involved in the transport through the BBB were also identified. Phytochemicals with antioxidant activity have been
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • cells, the inner lining of blood vessels controls the two-way transport of molecules and ions circulating in the blood and protects the inner tissue environment from harmful and dangerous substances [1][2][3][4]. The endothelium secretes vasodilation factors (e.g., nitric oxide and prostacyclin) and
  • extracellular signals and regulate the function of the vascular barrier [3]. The endothelium is also covered by a negatively charged layer of glycocalyx, which has a protective function and is involved in the transport of molecules across the endothelium [11][12]. The degree of endothelial permeability depends
  • on the physiology of the organ. The continuous endothelium is characterized by the lowest permeability. Most organs possess a continuous endothelium, which allows for diffusion of water and small molecules. Transporters, pumps, transcytosis, and ligand–receptor interactions are used to transport
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • important for electronic transport and semimetal-to-semiconductor transition, as well as its highly anisotropic Fermi surface (with an electron and hole Fermi energies of 27.2 and 10.8 meV, respectively), which results in an extremely low carrier density of around 3 × 1017 cm−3 [78] and very little overlap
  • nanostructures with oriented carrier transport, high optical performance, and a short carrier diffusion length, for instance, were prepared by Li and co-workers [42]. The photodegradation rates of ciprofloxacin and tetracycline were, respectively, 94.8% and 81.1% after 1 h. Additionally, Lin et al. [122
PDF
Album
Review
Published 03 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • tumor site, showing facilitated diffusion through tumor tissue due to their smaller size and specific surface engineering [111]. Wong et al. developed a multistage system with facilitated tumor diffusive transport composed of 100 nm gelatin nanoparticles, capable of releasing 10 nm NPs from their
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • sufficiently well, which is a problem for the surface deposition of catalysts and leads to ineffective operation in the fuel cell (poor O2 and H2 transport conditions). Considering the above factors, the material marked as C-11 was used as carbon support for the Pt catalyst due to its structure. This material
  • the amount of Pt deposited by PLD. The results of performance tests of Pt-based catalysts conducted in a membrane electrode assembly are shown in Figure 7. Polarization curves shown in Figure 7a are used to assess the influence of cell construction on the value of activation, resistance, and transport
  • of the polarization curve. However, their contribution differs depending on cell voltages. At high cell voltages, a contribution is dominated by activation losses; at intermediate voltages, it is dominated by resistance losses; and at low voltages by transport losses. The polarization curves of the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • with respect to the cutoff frequency fc of carrier transport between the bulk and interface states and measuring the difference in CPD by KPFM. In high–low KPFM, frequency modulation (FM) KPFM (FM-KPFM) combined with FM-AFM is used to detect the tip–sample interaction force. FM-KPFM has several
  • apply an AC bias voltage at frequencies lower than the cutoff frequency fc of carrier transport, and heterodyne FM-KPFM, based on the heterodyne effect (frequency conversion effect) between mechanical oscillation of the cantilever and electrostatic force oscillation, is used to apply an AC bias voltage
  • at frequencies higher than the cutoff frequency fc of carrier transport. To date, high–low KPFM has successfully visualized the surface band bending of pn-patterned silicon substrates [22]. However, in high–low KPFM, the CPD is compensated by a DC bias voltage. Hence, a certain DC voltage, determined
PDF
Album
Full Research Paper
Published 31 Jan 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • significantly, especially, by the presence and distribution of various functional groups on the basal plane and edges of carbon network, affecting, in turn, the CQD properties. Doping of CQDs with nitrogen, chlorine, or fluorine heteroatoms induces larger a transport bandgap, increased charge transfer
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • reflection (CAR): A Cooper pair may split into two electrons [2] (see Figure 1a), thereby generating pairs of entangled electrons in different metallic electrodes [3]. This phenomenon and its effect on electron transport in normal metal–superconductor–normal metal (NSN) hybrid structures were intensively
  • high transmissions, the CAR contribution vanishes [6][7]. These observations make an unambiguous identification of CAR in transport experiments a non-trivial task. The way out is to investigate fluctuations of electric currents passing through both NS boundaries of an NSN structure. While in non
PDF
Album
Full Research Paper
Published 09 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • ), which use hierarchical nano/microstructures to collect water. Some examples are the Trifolium pratense plant, the Cotula fallax cactus, and the Uloborus walckenaerius spider [14][15][16]. Usually, these biomimetic designs have an asymmetrical shape that energetically drives the directional transport of
  • hydrophilic ring in the middle of the nanocone. The increase in flux as the radius decreases is a behavior also observed in carbon nanotubes [55]. The increase in flux, followed by a decrease, with increase in hydrophobicity was also observed regarding the transport properties of nanotubes with tunable
PDF
Album
Full Research Paper
Published 02 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • found in [36]. Figure 1a and Figure 1c show layouts of the two studied arrays, which we refer to as (a) “meander” and (c) “linear”, respectively. The arrays are similar to those studied in [9][34][37], but have smaller JJ areas. Additional information about transport properties of such arrays can be
  • function of the number of active junctions, N. Blue symbols are measured directly from the I–V characteristics, and orange symbols are obtained by integration of the resonant peak area in dI/dV. (c) Simultaneous transport and detection measurements of a secondary resonance from Figure 7a. (d) Step
PDF
Album
Full Research Paper
Published 28 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • mechanical stress is applied. In this work, the transport properties of thin-film layered lead–PDP–lead structures were experimentally studied in a wide temperature range. At sufficiently high temperatures, the current voltage characteristics are satisfactorily described in terms of the injection model of
  • the preparation of a sample for electron microscopy. Results and Discussion The experiment was carried out in a four-contact configuration at direct or alternating currents. Both R(T) and V(I) dependences of the Pb–PDP–Pb sandwich could be measured, as shown in Figure 2a, and the transport
  • transport characteristics of thin-film lead electrodes demonstrated the metallic behavior: in normal state, the resistance of the films decreased linearly with decreasing temperature, and the I–V characteristics exhibit ohmic behavior. At temperatures of the order of Tc(Pbfilm) ≈ 8 K, a sharp
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • chemical, thermal, and charge transport properties, which can shift the light absorption of TiO2 to the visible region [29][30][31][32]. An emerging new material in optoelectronics is g-C3N4 (bandgap of 2.65–2.7 eV) because it has an appropriate band structure with suitable energy levels regarding TiO2
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • of the electrodes through Nyquist plots, as shown in Figure 8b. The MWCNTs electrode has the lowest arc radius among the prepared electrodes, indicating the fast charge transport on this electrode [36]. A contrastive result is observed for the TiO2 electrode, which could be due to the poor electrical
PDF
Album
Full Research Paper
Published 14 Dec 2022
Other Beilstein-Institut Open Science Activities