Search results

Search for "transport" in Full Text gives 720 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • 20 mA, and the mix begins to evaporate from the surface. The transport gas comes through the nozzle (5), enters into the evaporation chamber (2), and cools the vapours of two substances and transfers them into the intermediate chamber (7) through a nozzle (6) for cooling the vapours and partial
  • of composite nanoparticles. Elements of the installation: 1 – linear electron accelerator ELV-6; 2 – evaporation chamber; 3 – graphite crucible; 4 – evaporated materials; 5 – input pipe for the transport gas; 6 – connecting pipe; 7 – intermediate chamber for cooling the aerosol and partial deposition
PDF
Album
Full Research Paper
Published 13 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • study charge transport within 2D layers of organic semi-conductors (OSCs) using atomic force microscopy (AFM)-based lithography applied to self-assembled monolayers (SAMs), fabricated from appropriate organothiols. The extent of lateral charge transport was investigated by insulating pre-defined patches
  • a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of
  • the determination of mobilities in macroscopic samples. Keywords: conducting atomic force microscopy; lateral charge transport; nanografting; organic semiconductor; self-assembled monolayer; Introduction Charge transport in organic semiconductors plays a central role in the field of molecular
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • nontransparent 125 nm Ag back contact [21]. TiO2 is the most commonly used electron transport material (ETM) in Sb2S3 solar cells [18][25][26][27][28][29][30][31][32]. SnO2 and ZnO have also been employed as the planar ETM, with varying success [33][34]. Conjugated polymers, e.g., P3HT, Spiro-OMeTAD (2,2',7,7
  • '-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene), and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), are the most popular organic hole transport materials (HTMs) in Sb2S3 solar cell studies because of the high PCE values [17
  • penetration depth for light of 600 nm wavelength is about 100 nm, assuming α = 1 × 105 cm−1 (Figure 3c). Electron mobility tends to be greater in semiconductors when compared to hole mobility, although the efficacy of electron transport is also subject to change when the absorber thickness is varied. In this
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • primarily due to the suitability of PVP as an additive to enhance the photoelectric performance. Using PVP as an interlayer between the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer (ETL) and the Ag cathode in a high-performance inverted planar heterojunction perovskite solar
  • transport layer (HTL) was spin-coated on top of the CH3NH3PbI3 film using a Spiro-OMeTAD solution (the composition of the Spiro-OMeTAD solution was 72.3 mg Spiro-OMeTAD, 28.8 μL 4-tert-butylpyridine, 17.5 μL of lithium bis(trifluoromethanesulfonyl)imide solution (520 mg/mL in acetonitrile) and 1 mL
  • -Fermi level in the contacted perovskite and electron transfer material, but also by the defect-induced recombination in the electron transport channels [33]. It is clear that perovskite solar cells using a PVP-containing aqueous lead nitrate precursor solution will lead to an increase in Voc. The Voc of
PDF
Album
Full Research Paper
Published 05 Dec 2019

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • G’ values exceeded G” and the loss tangent was smaller than 1 for the viscoelastic preparations. Thus, the viscoelasticity is favorable to oscillatory movements performed at 25 °C, occurring during transport and storage of formulations [9]. The gelation temperature, Tsol–gel, of the formulations
  • used to evaluate the release mechanism of CUR. Here, the release exponent (n), which determines if the drug release mechanism is Fickian (Case I) or non-Fickian (transport Case II, anomalous or super case II) revealed an n value of 0.6517. The nanostructured systems displayed anomalous release kinetics
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • inside the CdS/CdTe inorganic heterojunction improved the conversion efficiency of the PV device by up to 8% [19]. Moreover, FeS2 has also been used in perovskite solar cells as a hole transport layer (HTL) to reduce the fabrication cost, reaching efficiencies of up to 11.2% [20]. On the other hand, OPVs
  • OPV active layer, the harvesting solar energy is usually enhanced as well as the charge transport and the charge collection behavior at the electrodes, and in some cases, also the lifetime stability is increased. However, such effects depend on the type of the third compound and its concentration in
  • -thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]]) and PC71BM to form efficient electron-transport pathways, achieving an enhanced PCE of 10.2% as compared to 9.2 and 8.1% for the binary PBDB-T:ITIC and PBDB
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • illustrates the effect of the 3D conductive network and the high porosity on electron and ion transport [40][41]. Figure 10 shows the rate performance of LiFePO4 and Li4Ti5O12 fiber membrane electrodes. Both electrodes can be charged and discharged normally from 0.5C to 10C. When the current density returns
  • porosity, stable structure, and the continuous conductive networks provide the electrodes with fast electronic and ionic transport paths [22][23][34][35]. This design and fabrication of all-fiber-based batteries provides a novel strategy for the development of advanced flexible lithium-ion batteries
  • all-fiber battery. Cycle performance of the LiFePO4//Li4Ti5O12 all-fiber battery at 1C. Sketch of 3D network structure for fast electron and ion transport. Supporting Information A comparison between this work with related literature references, and photographs and SEM pictures of the LiFePO4 and
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • electrical conductivity. Developing ultrathin nanostructured materials is critical to achieving high electrochemical performance, because they possess rich active sites for electrochemical reactions, shortening the transport path of ions in the electrolyte during the charge/discharge processes. This paper
  • Ni1−xCoxS2 material is shown in Figure 4h. The ASC shows a small intercept of 1.7 Ω and semicircle with small radius in the high-frequency part which reveals a good ion transport resistance in the as-prepared ASC. The big slope at low frequencies indicates a fast mass transfer rate in the electrolyte
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Ion mobility and material transport on KBr in air as a function of the relative humidity

  • Dominik J. Kirpal,
  • Korbinian Pürckhauer,
  • Alfred J. Weymouth and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Graphical Abstract
  • force microscopy; material transport; relative humidity; Introduction Defining surface properties under ambient conditions is challenging as they are heavily influenced by the environment. In general, there are various contributing factors such as temperature, air pressure and air composition
  • to “ice-like” [1][5][6][7][8]. The presence of water can have a large influence on the surface, especially for salt crystals. Investigations suggest that the presence of water and, as a consequence, the relative humidity have a direct influence on material transport and step movement [3][7]. The
  • amplitude A = 500 pm and a frequency-shift set point of Δf = +10 to +25 Hz. Data and image processing was performed with MATLAB (The MathWorks, Inc.) and WSxM [28]. Results and Discussion Initial experiments with poking holes This experiment shall investigate qualitatively how the material transport rate
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • the available tetrahedral sites, which are suggested to play a decisive role in the semiconducting and transport properties of the compound [2][33][82]. It should be noted that for both kuramite and mohite the cubic polymorphs have been reported but only at high temperatures of 680 °C and 780 °C
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • cancer [4][5][6][7][8][9]. Another important aspect of the efficacy of nanoparticles as delivery system for anticancer is their uptake and, in turn, the drug transport into cancer cells. Uptake mechanisms may differ between different types of nanoparticles, which may affect their effectiveness as
  • of nanoparticles decreases with an increase of size [53]. PLGA nanoparticles prepared by solvent displacement at pH 7 displayed the highest drug load. Hence, their superior effects may be explained by an increased drug transport per nanoparticle into cancer cells. Nano-sized drug carriers have been
PDF
Album
Full Research Paper
Published 29 Oct 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • , China 10.3762/bjnano.10.199 Abstract We have investigated the thermoelectric properties of a pristine MoO3 monolayer and its defective structures with different oxygen vacancies using first-principles methods combined with Boltzmann transport theory. Our results show that the thermoelectric properties
  • oxygen vacancies leads to a sharp peak near the Fermi level in the density of states. This proves to be an effective way to enhance the ZT values of the MoO3 monolayer. The increased ZT values can reach 0.84 (x-axis) and 0.12 (y-axis) at 300 K. Keywords: Boltzmann transport theory; first-principles
  • cm2·V−1·s−1 [17]. Therefore, it is of profound significance to explore the thermoelectric properties of MoO3 monolayers and discuss the effect of O vacancies on it. Computational methods In this work, we evaluate the thermoelectric properties of a MoO3 monolayer by Boltzmann transport theory and first
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • alkyl chains. Long-range ordered π-conjugated columns in densely packed arrays of the pentathiophene core confine charge carrier transport to one direction. The charge generation and transport can be effectively maximized by this carrier transport confinement. The fabricated field-effect transistor
  • significantly high mobility (10.4 cm2 V−1 s−1). In multilayer structures, the first layer on interface plays the main role in carrier transport and the layers above simply act as carrier suppliers. The crystal monolayer shows low anisotropy and thermally activated carrier transport. Such characteristics are
  • different from the band-like carrier transport modes in thicker crystals. The fabricated sensor with ultrathin organic semiconductor crystals was an efficient NH3 sensor with a detection limit on the 10 ppb level. Specific effect of molecular sensing at interfaces The high surface area nature of nanoporous
PDF
Album
Review
Published 16 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • , Shenzhen, 518060, China Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai 200444, China Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023
  • electronic properties [3][4][5][6], optical spectra [7][8][9][10], excitons [11][12][13], quantum transport [14][15][16][17][18], plasmons [5][19], thermoelectric effects [20][21], and superconductivity [22][23][24] of BP. One of the most promising applications of BP at the industrial level is expected to be
  • transition under axial strain [5][32]. The sensitivity to and the resilience against strain make BP an ideal material for strain-sensing electronics and flexible electronic devices. Xiao et al. fabricated few-layer BP nanosheets by chemical vapor transport [25], and observed a phase transition from an
PDF
Album
Full Research Paper
Published 24 Sep 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • ingredients could undergo self-assembly into stable vesicles in aqueous solution, which could act as a vehicle to facilitate membrane transport [29]. Compared to liposomes, phytosomes can load more drug molecules, and showed enhanced stability in the lyophilization and reconstitution processes prior to use
  • the lungs will be quickly eliminated due to large alveolar surface area, abundant capillaries and minimal transport distance, the sustained drug release delivery systems will improve the drug absorption and increase the activities [38]. Compared with DiP, P2P still showed better antiproliferative
  • of apoptosis, suggesting that the actions of P2 on induction of cell apoptosis could be altered after loading in phytosomes. One reason might be the changed drug uptake pathway. The free drugs were taken up by passive transport, while the phytosomes were taken up through endocytosis [39]. Besides
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • transport but also help the electrons transfer because of the excellent conductivity of CNTs. In the detailed image of CC-CNT@NiO shown in Figure 5c, the NiO nanoparticles adhered to CNT can be seen. The HR-TEM image in Figure 5d yields an interplanar spacing of 0.202 nm corresponding to the (012) plane of
  • high slope at low frequency indicates small capacitive resistance (0.465 Ω) and thus fast ion transport. Therefore, the EIS results prove that the good electrochemical performance of the CC-CNT@NiO electrode can be mainly attributed to its good electrical conductivity and low charge transfer resistance
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • Information File 1). Electrical measurements In order to analyse the possible enhancement of electrical conductivity after encapsulation of C60 in MUV-2, transport measurements for MUV-2 and C60@MUV-2 were performed using two-contact probe pressed-pellet devices measured at room temperature (300 K) (Figure 9
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • interface traps (known as Pb-type defects). These interface traps produce scattering centers that can affect the mobility of charge carriers, thus altering the transport properties [11]. Moreover, sharp interfaces with an abrupt change in the dielectric constant or thermal expansion coefficients give rise
PDF
Album
Full Research Paper
Published 17 Sep 2019

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • film itself was thin and brittle, it was easily cracked, but the film did not show any polymeric granules exposed on the surface. The dissolution of polymer chains in a solvent is known to involve two transport processes; (i) solvent diffusion and (ii) chain disentanglement [22]. When the COP-100 was
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws

  • Wanli Yang,
  • Shuaiqi Fan,
  • Yuxing Liang and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2019, 10, 1833–1843, doi:10.3762/bjnano.10.178

Graphical Abstract
  • ][7][8][9][10][11][12][13], MOSFETs [1][14], and acoustic charge transport devices [15][16][17]. For piezoelectric semiconductor devices, analyses on the static, time-harmonic and transient behaviors seem particularly important regarding their applications and development [18]. Zhang et al. [19
PDF
Album
Full Research Paper
Published 06 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • transport may lead to intracellular NP dissolution, which may trigger a cascade of different toxic actions. Further safety tests were performed using a concentration range of NPs or ions that did not cause a decrease of cell viability by more than 80%. Uptake of all tested NPs, as determined by flow
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

  • Hannah Onafuye,
  • Sebastian Pieper,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Klaus Langer and
  • Martin Michaelis

Beilstein J. Nanotechnol. 2019, 10, 1707–1715, doi:10.3762/bjnano.10.166

Graphical Abstract
  • transport is not sufficient to re-sensitise UKF-NB-3rDOX20 cells to doxorubicin to the level of UKF-NB-3 cells. To further study the role of ABCB1 as a doxorubicin resistance mechanism in UKF-NB-3rDOX20 cells, we performed additional experiments in which we combined the ABCB1 inhibitor zosuquidar and
  • reliably, nanoparticles can be used to transport drugs under circumvention of transporter-mediated efflux into cancer cells that are likely to respond to them. In conclusion, doxorubicin-loaded HSA nanoparticles produced by desolvation and cross-linking using glutaraldehyde overcome (in contrast to other
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • bidistilled water, a continuous release of MCPA from the bionanocomposite beads was achieved for more than a week, while the non-encapsulated materials released the 100% of MCPA in 48 h. Besides, the encapsulation may allow for better handling and transport of the herbicide. Keywords: controlled release
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • largest interface spin polarization of ≈55%. Our study on spin-transport properties indicates that the total transmission coefficient at the Fermi level mainly comes from the contribution from the spin up electrons, which are regarded as the majority of the spin electrons. When the two electrodes of the
  • × 105, and it has great application potential in spintronics devices. Keywords: current-perpendicular-to-plane geometry; Heusler alloy; nonequilibrium Green’s function; spin transport; spintronics; spin valve; Introduction Since the first theoretical prediction of the half metallicity of Heusler
  • is also an effective way to study the transport properties of a device. A high MR ratio of 174% was reported in a recent work on Fe4N-based CPP-SV, and its spin-polarized quantum transport properties were investigated [12]. The CoFeMnSi-based heterostructure exhibited an ultrahigh tunnel
PDF
Album
Full Research Paper
Published 08 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • ). This can be associated with the higher volume ratio of mesopores to micropores, since mesopores are acting as transport pores enabling a fast electrolyte ion mobility [73][74]. Interestingly, the rate capability for this material in organic and ionic liquid electrolytes, however, is worse compared to
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019
Other Beilstein-Institut Open Science Activities