Search results

Search for "TADF" in Full Text gives 21 result(s) in Beilstein Journal of Organic Chemistry.

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • research on organic compounds exhibiting thermally activated delayed fluorescence (TADF) has led to numerous patents and research articles. This study focuses on the synthesis and investigation of the semiconducting properties of polyaromatic π-systems containing two and three fragments of pyridine-2,6
  • the solutions of the compounds showed non-structured emission peaks in the visible region, which are attributed to ICT emission. The PL intensities of the solutions of the compounds are enhanced after deoxygenation, which is indicative of TADF. The photoluminescence quantum yields and TADF properties
  • electronic devices including OLEDs. Thus, extensive search for organic dyes exhibiting E-type fluorescence (thermally activated delayed fluorescence (TADF)) is booming [1][2][3]. The majority of research results are protected by an impressive amount of patent applications. The first example of a blue TADF
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Quinoxaline derivatives as attractive electron-transporting materials

  • Zeeshan Abid,
  • Liaqat Ali,
  • Sughra Gulzar,
  • Faiza Wahad,
  • Raja Shahid Ashraf and
  • Christian B. Nielsen

Beilstein J. Org. Chem. 2023, 19, 1694–1712, doi:10.3762/bjoc.19.124

Graphical Abstract
  • high electron mobility and efficient charge transfer. In particular, Qx derivatives find use as non-fullerene acceptors (NFAs) in OSCs and as essential building blocks in sensitizers for DSSCs. The significance of Qx extends beyond to thermally activated delayed fluorescence (TADF) emitters and
  • cm2 V−1 s−1 [20]. Figure 6 shows the molecular structures of the prominent compounds exhibiting potential as n-type materials. Table 4 lists OFET device properties of devices employing Qx derivatives. Quinoxalines as ETL and TADF emitters Qx derivatives have garnered substantial attention from the
  • scientific community due to their remarkable characteristics as electron-transporting and hole-blocking layers in organic electronics [60]. Moreover, these derivatives have exhibited promising traits as thermally activated delayed fluorescence (TADF) emitters. This multifaceted nature has spurred ongoing
PDF
Album
Review
Published 09 Nov 2023

Organic thermally activated delayed fluorescence material with strained benzoguanidine donor

  • Alexander C. Brannan,
  • Elvie F. P. Beaumont,
  • Nguyen Le Phuoc,
  • George F. S. Whitehead,
  • Mikko Linnolahti and
  • Alexander S. Romanov

Beilstein J. Org. Chem. 2023, 19, 1289–1298, doi:10.3762/bjoc.19.95

Graphical Abstract
  • Abstract Organic thermally activated delayed fluorescence (TADF) materials have been widely investigated due to their impressive electronic properties and applied potential for the third generation of organic light-emitting diodes (OLED). We present organic TADF material (4BGIPN) based on the strained
  • nitrogen-rich 4BGIPN material has a significantly stabilized highest occupied molecular orbital (HOMO) at −6.4 eV while the lowest unoccupied molecular orbital (LUMO) at −4.0 eV, indicating potential suitability for application as the electron transport layer or TADF class III emitter in OLEDs. Keywords
  • : guanidine; organic; photoluminescence; TADF; yellow; Introduction Thermally activated delayed fluorescence (TADF) is a photoluminescence mechanism where excitons undergo thermally-assisted reverse-intersystem crossing from an excited triplet state to a higher-lying in energy singlet state to emit delayed
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2023

The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads

  • Liyuan Cao,
  • Xi Liu,
  • Xue Zhang,
  • Jianzhang Zhao,
  • Fabiao Yu and
  • Yan Wan

Beilstein J. Org. Chem. 2023, 19, 1028–1046, doi:10.3762/bjoc.19.79

Graphical Abstract
  • –acceptor dyads were prepared to study the thermally activated delayed fluorescence (TADF) properties of the dyads, from a point of view of detection of the various transient species. The photophysical properties of the dyads were tuned by changing the electron-donating and the electron-withdrawing
  • capability of the PTZ and NI moieties, respectively, by oxidation of the PTZ unit, or by using different aryl substituents attached to the NI unit. This tuning effect was manifested in the UV–vis absorption and fluorescence emission spectra, e.g., in the change of the charge transfer absorption bands. TADF
  • was observed for the dyads containing the native PTZ unit, and the prompt and delayed fluorescence lifetimes changed with different aryl substituents on the imide part. In polar solvents, no TADF was observed. For the dyads with the PTZ unit oxidized, no TADF was observed as well. Femtosecond
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2023

Naphthalimide-phenothiazine dyads: effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence

  • Kaiyue Ye,
  • Liyuan Cao,
  • Davita M. E. van Raamsdonk,
  • Zhijia Wang,
  • Jianzhang Zhao,
  • Daniel Escudero and
  • Denis Jacquemin

Beilstein J. Org. Chem. 2022, 18, 1435–1453, doi:10.3762/bjoc.18.149

Graphical Abstract
  • investigate the joint influence of the conformation flexibility and the matching of the energies of the charge-transfer (CT) and the localized triplet excited (3LE) states on the thermally activated delayed fluorescence (TADF) in electron donor–acceptor molecules, a series of compact electron donor–acceptor
  • can be controlled. The singlet oxygen quantum yield (ΦΔ) of NI-PTZ is moderate in n-hexane (HEX, ΦΔ = 19%). TADF was observed for the dyads, the biexponential luminescence lifetime are 16.0 ns (99.9%)/14.4 μs (0.1%) for the dyad and 7.2 ns (99.6%)/2.0 μs (0.4%) for the triad. Triplet state was
  • observed in the nanosecond transient absorption spectra with lifetimes in the 4–48 μs range. Computational investigations show that the orthogonal electron donor–acceptor molecular structure is beneficial for TADF. These calculations indicate small energetic difference between the 3LE and 3CT states, which
PDF
Supp Info
Full Research Paper
Published 11 Oct 2022

Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells

  • Merve Karaman,
  • Abhishek Kumar Gupta,
  • Subeesh Madayanad Suresh,
  • Tomas Matulaitis,
  • Lorenzo Mardegan,
  • Daniel Tordera,
  • Henk J. Bolink,
  • Sen Wu,
  • Stuart Warriner,
  • Ifor D. Samuel and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2022, 18, 1311–1321, doi:10.3762/bjoc.18.136

Graphical Abstract
  • ), Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna (Valencia), Spain School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK 10.3762/bjoc.18.136 Abstract We designed and synthesized two new ionic thermally activated delayed fluorescent (TADF) emitters that are charged analogues of
  • a known multiresonant TADF (MR-TADF) compound, DiKTa. The emission of the charged derivatives is red-shifted compared to the parent compound. For instance, DiKTa-OBuIm emits in the green (λPL = 499 nm, 1 wt % in mCP) while DiKTa-DPA-OBuIm emits in the red (λPL = 577 nm, 1 wt % in mCP). In 1 wt % mCP
  • limited to 25% [13]. Thermally activated delayed fluorescent (TADF) emitters are one class of purely organic materials that can harvest triplet excitons in electroluminescent (EL) devices through a triplet to singlet reverse intersystem crossing (RISC) upconversion process [14]. Indeed, OLEDs using TADF
PDF
Album
Supp Info
Full Research Paper
Published 22 Sep 2022

Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation

  • Ashish Kumar Mazumdar,
  • Gyana Prakash Nanda,
  • Nisha Yadav,
  • Upasana Deori,
  • Upasha Acharyya,
  • Bahadur Sk and
  • Pachaiyappan Rajamalli

Beilstein J. Org. Chem. 2022, 18, 1177–1187, doi:10.3762/bjoc.18.122

Graphical Abstract
  • thermally activated delayed fluorescence (TADF) characteristics are emerging due to the potential applications in optoelectronic devices, time-resolved luminescence imaging, and solid-phase sensing. Herein, we synthesized two (4-bromobenzoyl)pyridine (BPy)-based donor–acceptor (D–A) compounds with varying
  • donor size and strength: the emitter BPy-pTC with tert-butylcarbazole (TC) as the donor and BPy-p3C with bulky tricarbazole (3C) as the donor unit. Both BPy-pTC and BPy-p3C exhibited prominent emission with TADF properties in solution and in the solid phase. The stronger excited-state charge transfer
  • as well as the relevance for fluorescence-based acid–base sensing. Keywords: intramolecular charge transfer; molecular aggregates; sensing; thermally activated delayed fluorescence (TADF); Introduction Metal-free organic solid-state emitters have gained increasing interest in recent years due to
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • possess antibacterial [2], antifungal [3], and antiviral properties [4] and form the core structure of commercially available drugs like brimonidine, varenicline, and quinacillin [5]. Quinoxalines can also be used in organic solar cell polymers [1][6] and have been described as donor moieties in many TADF
  • -diisopropylethylamine; OLED, organic-light emitting diode; SCE, saturated calomel electrode; TADF, thermally activated delayed fluorescence; TEMPO, 2,2,6,6-tetramethylpiperidinyloxyl; TIQ, triazoloimidazoquinoxaline. UV–vis absorption spectra of the obtained metal complexes (18 µM solutions) in acetonitrile at 20 °C
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons

  • Hengjia Liu and
  • Guohua Xie

Beilstein J. Org. Chem. 2022, 18, 825–836, doi:10.3762/bjoc.18.83

Graphical Abstract
  • ) [6][7]. In 2012, Adachi et al. first reported purely organic thermally activated delayed fluorescent (TADF) materials, which achieved nearly 100% exciton utilization via reverse intersystem crossing (RISC) [8]. Meanwhile, novel materials based on new luminescence mechanisms such as hybridized local
PDF
Album
Review
Published 12 Jul 2022

Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di-tert-butyl-9-carbazolyl)-5-methylpyrimidines

  • Irina Fiodorova,
  • Tomas Serevičius,
  • Rokas Skaisgiris,
  • Saulius Juršėnas and
  • Sigitas Tumkevicius

Beilstein J. Org. Chem. 2022, 18, 497–507, doi:10.3762/bjoc.18.52

Graphical Abstract
  • .18.52 Abstract The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure
  • of TADF compounds through the selection of different electron-donating or accepting fragments opens great possibilities to tune the emission properties and rates. Here we present the synthesis of a series of novel pyrimidine–carbazole emitters and their photophysical characterization in view of
  • effects of substituents in the pyrimidine ring on their TADF properties. We demonstrate that electron-withdrawing substituents directly connected to the pyrimidine unit have greater impact on the lowering of the energy gap between singlet and triplet states (ΔEST) for efficient TADF as compared to those
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2022

Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[a,j]phenazine

  • Saika Izumi,
  • Prasannamani Govindharaj,
  • Anna Drewniak,
  • Paola Zimmermann Crocomo,
  • Satoshi Minakata,
  • Leonardo Evaristo de Sousa,
  • Piotr de Silva,
  • Przemyslaw Data and
  • Youhei Takeda

Beilstein J. Org. Chem. 2022, 18, 459–468, doi:10.3762/bjoc.18.48

Graphical Abstract
  • of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark 10.3762/bjoc.18.48 Abstract A new thermally activated delayed fluorescence (TADF
  • thermally activated delayed fluorescent behavior. Keywords: charge-transfer; dibenzophenazine; donor–acceptor; organic light-emitting diodes; thermally activated delayed fluorescence; Introduction Thermally activated delayed fluorescence (TADF), which was firstly reported in 1961 by Parker and Hatchard [1
  • ], is a fundamental photophysical phenomenon that refers to delayed fluorescence radiated from the singlet excited state (S1) as a consequence of a brief detour to a triplet excited state (Tn) [i.e., intersystem crossing (ISC) and reverse intersystem crossing (rISC)]. Since the revisit of TADF in
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2022

Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode

  • Ettore Crovini,
  • Zhen Zhang,
  • Yu Kusakabe,
  • Yongxia Ren,
  • Yoshimasa Wada,
  • Bilal A. Naqvi,
  • Prakhar Sahay,
  • Tomas Matulaitis,
  • Stefan Diesing,
  • Ifor D. W. Samuel,
  • Wolfgang Brütting,
  • Katsuaki Suzuki,
  • Hironori Kaji,
  • Stefan Bräse and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2021, 17, 2894–2905, doi:10.3762/bjoc.17.197

Graphical Abstract
  • %, with Commission Internationale de l’Éclairage coordinate of (0.22, 0.47), at 1 mA cm−2. Keywords: blue emitters; dimer; indolocarbazole; orientation; outcoupling effect; solution-processed OLEDs; TADF emitters; triazine; Introduction Organic thermally activated delayed fluorescence (TADF) materials
  • luminescence in an OLED is achieved through the radiative decay of electrically generated excitons, high-efficiency devices must be able to harvest both the 25% singlet and 75% triplet excitons to produce light [3]. Distinct from phosphorescent compounds, TADF molecules harvest triplet excitons by converting
  • -emitter design are best illustrated by the cross-comparison of CzTRZ [20][21], a molecule that did not present any TADF and thus the OLED showed a low EQEmax of 5.8%, while the emitter, 33TCzTTrz [22], is TADF and the OLED showed a much superior EQEmax of 25.0%. There is a significant red-shift of the
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2021
Graphical Abstract
  • thermally activated delayed fluorescence (TADF) emitters. In the present study, we investigate computationally the potential of other fluorine-containing acceptors, trifluoromethoxy (OCF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5), within two families of donor–acceptor TADF emitters. Time
  • , respectively. The compounds 2CzCF3, 2CzSCF3, and 2CzSF5, from Type I molecules, show significant promise as deep blue TADF emitters, possessing high calculated singlet energies in the gas phase (3.62 eV, 3.66 eV, and 3.51 eV, respectively) and small, ΔESTs, of 0.17 eV, 0.22 eV, and 0.07 eV, respectively. For
  • compounds 5CzSCF3 and 5CzSF5, from Type II molecules, the singlet energies are stabilized to 3.24 eV and 3.00 eV, respectively, while ΔESTs are 0.27 eV and 0.12 eV, respectively, thus both show promise as blue or sky-blue TADF emitters. All these six molecules possess a dense number of intermediate excited
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Synthesis and properties of quinazoline-based versatile exciplex-forming compounds

  • Rasa Keruckiene,
  • Simona Vekteryte,
  • Ervinas Urbonas,
  • Matas Guzauskas,
  • Eigirdas Skuodis,
  • Dmytro Volyniuk and
  • Juozas V. Grazulevicius

Beilstein J. Org. Chem. 2020, 16, 1142–1153, doi:10.3762/bjoc.16.101

Graphical Abstract
  • properties [8]. A quinazoline-based emitter exhibiting thermally activated delayed fluorescence (TADF) was also reported [6] and green to yellow TADF OLEDs were fabricated with EQEs from 17.6 to 20.5%. The multicolor emission of a quinazoline–carbazole compound was employed in white OLEDs. White
  • photoluminescence and electroluminescence based on blue emissive quinazoline derivatives obtained through controlled acid protonation were employed in a single-layered white OLED with EQEs of 1.4% and 3% [9]. These reports proved that by using an asymmetric quinazoline acceptor, highly efficient TADF materials for
PDF
Album
Full Research Paper
Published 28 May 2020

Aryl-substituted acridanes as hosts for TADF-based OLEDs

  • Naveen Masimukku,
  • Dalius Gudeika,
  • Oleksandr Bezvikonnyi,
  • Ihor Syvorotka,
  • Rasa Keruckiene,
  • Dmytro Volyniuk and
  • Juozas V. Grazulevicius

Beilstein J. Org. Chem. 2020, 16, 989–1000, doi:10.3762/bjoc.16.88

Graphical Abstract
  • devices [1]. Nowadays, organic compounds exhibiting thermally activated delayed fluorescence (TADF) are widely used as emitters for OLEDs [2]. The great interest in TADF emitters is mainly explained by their heavy-atoms-free molecular structure and 100% theoretical limit of internal quantum efficiency
  • (IQE) of electroluminescent (EL) devices based on the TADF phenomenon [3]. Thus, the achievable IQE of TADF-based OLEDs is as high as it is for phosphorescent organic light emitting diodes [4]. An efficient spin conversion between triplets and singlets in organic molecules requires a small energy
  • splitting (∆EST) between the lowest singlet and triplet excited states [5]. Various TADF derivatives have been developed with the aim to obtain highly efficient OLEDs by combining diverse donor and electron-acceptor moieties [6][7]. To successfully exploit TADF emitters in OLED structures, appropriate hosts
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Synthesis and optoelectronic properties of benzoquinone-based donor–acceptor compounds

  • Daniel R. Sutherland,
  • Nidhi Sharma,
  • Georgina M. Rosair,
  • Ifor D. W. Samuel,
  • Ai-Lan Lee and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2019, 15, 2914–2921, doi:10.3762/bjoc.15.285

Graphical Abstract
  • to the benzoquinone acceptor. Compound 3, where benzoquinone is para-conjugated to the diphenylamine donor group, exhibited thermally activated delayed fluorescence (TADF) with a biexponential lifetime characterized by a prompt ns component and a delayed component of 353 μs. Keywords: materials
  • noble metal complex, such as those based on iridium(III) [22]; (2) triplet–triplet annihilation (TTA) [23], or (3) TADF. The maximum IQE for TTA is 62.5%, whereas for TADF, it is as high as 100% [24]. TADF emitter development has thus emerged as an effective avenue to achieve high performance in OLEDs
  • of the TADF emitter requires that the highest occupied molecular orbital (HOMO) must be spatially well-separated from the lowest unoccupied molecular orbital (LUMO), such that the exchange integral is minimized [25][26]. Due to a ′trade-off′ between ΔEST and high fluorescence radiative rates [27], it
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region

  • Aude-Héloise Bonardi,
  • Frédéric Dumur,
  • Guillaume Noirbent,
  • Jacques Lalevée and
  • Didier Gigmes

Beilstein J. Org. Chem. 2018, 14, 3025–3046, doi:10.3762/bjoc.14.282

Graphical Abstract
  • of the ligand is essential for good properties. 2.1.3 The latest generation of metal-based catalysts: Emergence of the TADF complexes: Metal complexes are still at the origin of numerous researches as photoredox catalysts, these researches being notably motivated by their remarkable long-lived
  • excited state lifetimes that make these structures highly reactive structures. Since 2012 and thanks to the pioneering works of Adachi et al. in this field [69][70][71], a new class of metal-based complexes has been developed for photoredox application: TADF (abbreviation for Thermally Activated Delayed
  • localization of the electrons on the triplet state, which upconvert to the singlet state thermally (i.e., at room temperature) and can promote a radiative decay from the singlet excited state. This property gives to TADF complex lifetime of their excited state comparable to the lifetime of the excited state of
PDF
Album
Review
Published 12 Dec 2018

Recent advances in materials for organic light emitting diodes

  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2018, 14, 1944–1945, doi:10.3762/bjoc.14.168

Graphical Abstract
  • in design, from fluorescent compounds to phosphorescent organometallic complexes to organic thermally activated delayed fluorescence (TADF) molecules, the latter driving tremendous recent excitement within the field of organic semiconductor research. This thematic issue of the Beilstein Journal of
  • Organic Chemistry covers novel phosphorescent and TADF materials design and their inclusion as emitters in OLEDs. Some highlights in this issue include the work of Thanh-Tuân Bui et al., who provide a welcome perspective on blue TADF materials for OLEDs in the form of a review article [2]. Cristina
  • molecular design approach for orange-emitting TADF molecules employing a fluorenone acceptor [5]. In the full research paper by Feng-Ming Xie et al., they disclose two bipolar, high-energy phenothiazine-5,5-dioxide-based host materials conceived to be used for deep blue OLED devices [6]. The articles in
PDF
Editorial
Published 27 Jul 2018

D–A–D-type orange-light emitting thermally activated delayed fluorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies

  • Lin Gan,
  • Xianglong Li,
  • Xinyi Cai,
  • Kunkun Liu,
  • Wei Li and
  • Shi-Jian Su

Beilstein J. Org. Chem. 2018, 14, 672–681, doi:10.3762/bjoc.14.55

Graphical Abstract
  • . China 10.3762/bjoc.14.55 Abstract The design of orange-light emitting, thermally activated, delayed fluorescence (TADF) materials is necessary and important for the development and application of organic light-emitting diodes (OLEDs). Herein, two donor–acceptor–donor (D–A–D)-type orange TADF materials
  • exciton utilization of TADF materials. Importantly, OLEDs based on 2 exhibited a maximum external quantum efficiency of 8.9%, which is higher than the theoretical efficiency of the OLEDs based on conventional fluorescent materials. Keywords: fluorenone acceptor; orange light emission; organic light
  • increase the cost of the final OLEDs. Alternatively, a thermally activated delayed fluorescence (TADF) material is a kind of noble-metal-free fluorescent material able to transform triplet excitons into singlet excitons through reverse intersystem crossing (RISC) to achieve 100% IQEmax in theory [4]. On the
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2018

Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)

  • Thanh-Tuân Bui,
  • Fabrice Goubard,
  • Malika Ibrahim-Ouali,
  • Didier Gigmes and
  • Frédéric Dumur

Beilstein J. Org. Chem. 2018, 14, 282–308, doi:10.3762/bjoc.14.18

Graphical Abstract
  • activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular
  • popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. Keywords: blue; electroluminescence; emitter; OLED; TADF; Introduction Since the pioneering works of Tang and VanSlyke in
  • delayed fluorescence (TADF) emitters. As specificity, these materials can thermally repopulate the singlet state from the triplet state by reverse intersystem crossing (RISC), leading to an increase of the luminescence intensity. From the OLEDs viewpoint, TADF emitters behave by harvesting both singlet
PDF
Album
Review
Published 30 Jan 2018

Palladium-catalyzed synthesis of N-arylated carbazoles using anilines and cyclic diaryliodonium salts

  • Stefan Riedmüller and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2013, 9, 1202–1209, doi:10.3762/bjoc.9.136

Graphical Abstract
  • , or as host or luminescent-materials in electronic devices (OLEDs) (Figure 1) [2][3][4][5][6][7]. Representative examples are the host molecules mCP, CBP and CBZ1-F2, the hole transporter BCz2 [8] or the recently described thermally activated delayed fluorescence (TADF) emitter 4CzIPN [9]. Therefore
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013
Other Beilstein-Institut Open Science Activities