Search results

Search for "dihydroxylation" in Full Text gives 106 result(s) in Beilstein Journal of Organic Chemistry.

Rapid access to the core of malayamycin A by intramolecular dipolar cycloaddition

  • Yilin Liu,
  • Yuchen Yang,
  • Chen Yang,
  • Sha-Hua Huang,
  • Jian Jin and
  • Ran Hong

Beilstein J. Org. Chem. 2025, 21, 2542–2547, doi:10.3762/bjoc.21.196

Graphical Abstract
  • position. Therefore, dihydroxylation [37] readily converted alkene 11 to diol 12 as a mixture of inseparable isomers. Without purification, oxidative cleavage with NaIO4 resulted in a compound with strong UV absorption, which was eventually identified as enone 14 (Scheme 3). It is assumed that the
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2025

Transformation of the cyclohexane ring to the cyclopentane fragment of biologically active compounds

  • Natalya Akhmetdinova,
  • Ilgiz Biktagirov and
  • Liliya Kh. Faizullina

Beilstein J. Org. Chem. 2025, 21, 2416–2446, doi:10.3762/bjoc.21.185

Graphical Abstract
  • piperylene, having previously protected its keto group as dioxolane (Scheme 5). Dioxolane 26 was converted to glycol 27 through vic-dihydroxylation in moderate yield. Then, dialdehyde 28 was obtained by treatment with NaIO4 with a yield of 74%. Subsequent intramolecular aldol condensation of dialdehyde 28
PDF
Album
Review
Published 06 Nov 2025

Recent advances in Norrish–Yang cyclization and dicarbonyl photoredox reactions for natural product synthesis

  • Peng-Xi Luo,
  • Jin-Xuan Yang,
  • Shao-Min Fu and
  • Bo Liu

Beilstein J. Org. Chem. 2025, 21, 2315–2333, doi:10.3762/bjoc.21.177

Graphical Abstract
  • transformation of 10 via sequential Wittig reaction, dihydroxylation, and Swern oxidation generated 1,2-diketone 12, thus setting the stage for the Norrish–Yang reaction. Finally, irradiation of 12 with a compact fluorescent lamp (CFL) completed (+)-cyclobutastellettolide B (13) as the sole product in 95% yield
  • (C6F5)3B triggered a Meinwald rearrangement, generating aldehyde 66. Nucleophilic addition, oxidation of the resulting alcohol, and base-promoted epimerization at C6 of 67' delivered 67. Subsequent dihydroxylation of the alkene in 67 and protection of the resulting 1,2-diol as a cyclic carbonate
PDF
Album
Review
Published 30 Oct 2025
Graphical Abstract
  • of 57 to phenolic intermediate followed by the construction of the B ring generated tricyclic core 59. Subsequently, dihydroxylation of the doubled bond in the central six-membered ring using OsO4/NMO gave diol, which was then subjected to acetylation of the two hydroxy groups and hydrogenation of C5
PDF
Album
Review
Published 14 Oct 2025

Bioinspired total syntheses of natural products: a personal adventure

  • Zhengyi Qin,
  • Yuting Yang,
  • Nuran Yan,
  • Xinyu Liang,
  • Zhiyu Zhang,
  • Yaxuan Duan,
  • Huilin Li and
  • Xuegong She

Beilstein J. Org. Chem. 2025, 21, 2048–2061, doi:10.3762/bjoc.21.160

Graphical Abstract
  • propose the biosynthetic pathway, which has not yet been reported in Duh’s isolation report (Scheme 1a). In our proposal, the linear sesquiterpenoid trans-nerolidol (1) with a chiral tertiary alcohol undergoes dihydroxylation to generate triol 2, which further proceeds a C–C bond cleavage to afford
PDF
Album
Review
Published 09 Oct 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
PDF
Album
Review
Published 27 Jun 2025

Recent total synthesis of natural products leveraging a strategy of enamide cyclization

  • Chun-Yu Mi,
  • Jia-Yuan Zhai and
  • Xiao-Ming Zhang

Beilstein J. Org. Chem. 2025, 21, 999–1009, doi:10.3762/bjoc.21.81

Graphical Abstract
  • cyclopentane ring, dihydroxylation, and oxidation of the diol to a diketone, produced intermediate 25 in its enol form. From this common intermediate, regioselective etherification at the less hindered position formed an enol ether. Final reduction of both the amide and the ketone using alane completed the
PDF
Album
Review
Published 22 May 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • first introduced the 2,2-dimethylpentenoate protecting group 32 (Figure 1) similar to the pivalate group which showed versatility in its cleavage principle [101]. Hydroboration oxidation of the olefinic bond helped in the removal of the protecting group. On the other hand, dihydroxylation with osmium
PDF
Album
Review
Published 17 Feb 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • catalysts are synthesized by joining together two fragments of cinchona alkaloids. In this manner, it is possible to obtain a symmetric catalyst, which can engage in hydrogen bonding interactions and deprotonation processes. Although they were originally used for Sharpless dihydroxylation, they have been
PDF
Album
Review
Published 10 Dec 2024

Access to optically active tetrafluoroethylenated amines based on [1,3]-proton shift reaction

  • Yuta Kabumoto,
  • Eiichiro Yoshimoto,
  • Bing Xiaohuan,
  • Masato Morita,
  • Motohiro Yasui,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2024, 20, 2776–2783, doi:10.3762/bjoc.20.233

Graphical Abstract
  • by Linclau et al. They have reported that the asymmetric Sharpless dihydroxylation of readily available (E)-5-bromo-4,4,5,5-tetrafluoro-2-penten-1-ol derivative 6 led to the corresponding chiral diols 7 with an excellent enantiomeric excess, 96% ee (reaction 1 in Scheme 1) [20][21]. It has also been
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2024

Efficient modification of peroxydisulfate oxidation reactions of nitrogen-containing heterocycles 6-methyluracil and pyridine

  • Alfiya R. Gimadieva,
  • Yuliya Z. Khazimullina,
  • Aigiza A. Gilimkhanova and
  • Akhat G. Mustafin

Beilstein J. Org. Chem. 2024, 20, 2599–2607, doi:10.3762/bjoc.20.219

Graphical Abstract
  • dihydroxylation product – was only obtained after the oxidation of the previously synthesized HPy (9, Scheme 2). The overall yield of the 2,5-dihydroxy derivative 11 with PcCo, PcFe(II), and PcFe(III) ranged from 37–72%, with the highest yield (72%) obtained at 0.15 wt % PcCo. Increasing the catalyst quantity did
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • − is protonated to produce DDQH2. The anodic oxidation of DDQH2 regenerates DDQ, which re-enters the catalytic cycle (Scheme 29). Furthermore, Qiu and coworkers disclosed a metal-free electrochemical dihydroxylation of unactivated alkenes using water as the hydroxy source under air conditions [40
PDF
Album
Review
Published 09 Oct 2024

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • furnished the α,β-unsaturated ester 69. The subsequent catalytic hydrogenation led to the desired phenol 70 (Scheme 13) [44][45]. An Ullmann coupling reaction using compounds 66 and 70 gave the corresponding diaryl ether 71, which was submitted to an asymmetric dihydroxylation reaction using (DHQD)2PHAL to
  • alcohol 143 with pivaloyl chloride [64] and subsequent dihydroxylation of the double bond in 144 according to the Sharpless protocol using AD-mix-β [65], furnished the required syn-diol 145 in 59% yield and >99% ee. The hydroxy groups were protected [66] as TIPS ethers 146 and treatment with DIBAL-H led
PDF
Album
Review
Published 29 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • ideal diversification point to access (−)-curvulamine (171) by CBS reduction, bipolamines D (173) and E (172) by additional BH3·DMS hydroboration, and bipolamine G (174) initially by dihydroxylation of the alkene moiety with osmium tetroxide, followed by acidic etherification and reduction. Finally
PDF
Album
Review
Published 02 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • was carried out through a two-step sequence including dihydroxylation (K2OsO4·H2O, 90% yield) of 8 and oxidative cleavage (NaIO4, 91% yield) of the diol intermediate. Note that both ozonolysis and the one-pot Lemieux–Johnson oxidative cleavage process of 8 led instead to methyl ketone 11 in a
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • to the literature, a Sharpless dihydroxylation of benzyl tiglate (8) to form a chiral diol 9 was followed by a Parikh–Doering oxidation to give the corresponding product 10 in 62% yield (Scheme 4) [58][59]. Subsequent acryloylation in the presence of DMAP and hydroquinone gave the intramolecular
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants

  • Karan Malhotra and
  • Jakob Franke

Beilstein J. Org. Chem. 2022, 18, 1289–1310, doi:10.3762/bjoc.18.135

Graphical Abstract
  • catalyse the initial C22,16 dihydroxylation of cholesterol (3) [35]; in contrast, the related CYP DzCYP90B71 was found to catalyse only the first hydroxylation at C22 [66]. This step is followed by a rate-limiting cyclisation step through unstable furostanol intermediate 14 that involves CYP-catalysed
PDF
Album
Supp Info
Review
Published 21 Sep 2022

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • acid (17) (Scheme 4). The β-hydroxy moiety in 44 can be installed via Sharpless dihydroxylation of the silyl enol ether derived from ketone 45. The 5,6-dihydro-α-pyrone group in ketone 45 is envisaged from protected diol 46 by the sequence of Mitsunobu esterification, ring-closing metathesis, and base
  • followed by addition of TBSOTf at low temperature successfully formed the (Z)-silyl enol ether 54. Application of the Sharpless asymmetric dihydroxylation, promoted by AD-mix-β, gave the expected β-(R)-hydroxy cyclopropyl product 55 in 84% yield with moderate diastereoselectivity (dr = 2). The formation of
  • Jin’s one step dihydroxylation–oxidation protocol using a NaIO4/(cat.) OsO4 system. Allylation of the resulting aldehyde 74 was best performed under Brown’s protocol at low temperature utilizing a chiral allyl reagent prepared from allylmagnesium bromide and (+)-B-chloro-diisopinocampheylborane. By this
PDF
Album
Review
Published 14 Sep 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • shown in Scheme 11. First, dibenzyl allylphosphonate (65) was converted to benzyl allylphosphonochloridate (66), which was then coupled with benzyl 2-azido-3-hydroxy-2-methylpropanoate (67) producing benzyl [allyl(benzyloxy)phosphoryl)oxy]propanoate (68). After the dihydroxylation with osmium tetroxide
PDF
Album
Review
Published 16 Feb 2021

Regioselective chemoenzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases

  • Olga Gherbovet,
  • Fernando Ferreira,
  • Apolline Clément,
  • Mélanie Ragon,
  • Julien Durand,
  • Sophie Bozonnet,
  • Michael J. O'Donohue and
  • Régis Fauré

Beilstein J. Org. Chem. 2021, 17, 325–333, doi:10.3762/bjoc.17.30

Graphical Abstract
  • tetroxide-mediated dihydroxylation in the presence of N-methylmorpholine N-oxide (NMMO) afforded 11 in 90% yield. Finally, the regioselective transferuloylation of the primary hydroxy group of the triol derivative 11 with Lipozyme® TL IM was performed, and the expected chromogenic substrate 12 was isolated
PDF
Album
Full Research Paper
Published 01 Feb 2021

Diels–Alder reaction of β-fluoro-β-nitrostyrenes with cyclic dienes

  • Savva A. Ponomarev,
  • Roman V. Larkovich,
  • Alexander S. Aldoshin,
  • Andrey A. Tabolin,
  • Sema L. Ioffe,
  • Jonathan Groß,
  • Till Opatz and
  • Valentine G. Nenajdenko

Beilstein J. Org. Chem. 2021, 17, 283–292, doi:10.3762/bjoc.17.27

Graphical Abstract
  • straightforward way to numerous fluorine-containing bicyclic compounds not previously available. The syn-dihydroxylation of compound 2f with the N-methylmorpholine-N-oxide (NMO)–OsO4 system resulted in a mixture of the corresponding diols 5 in a 36:64 ratio in 65% yield. Again, exo-dihydroxylation is to be
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2021

Progress in the total synthesis of inthomycins

  • Bidyut Kumar Senapati

Beilstein J. Org. Chem. 2021, 17, 58–82, doi:10.3762/bjoc.17.7

Graphical Abstract
  • transformed into (−)-101 using a three-step sequence. Upon iodination of (−)-101 produced iodide (+)-102 in excellent yield. Deiodination of (+)-102 followed by regioselective dihydroxylation with Sharpless’ AD mix-β reagent [64][65] provided diol (−)-103 as a mixture of stereoisomers. Significantly, the diol
PDF
Album
Review
Published 07 Jan 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • second generation Grubbs catalyst 57 in 99% yield. The azabicyclic system (+)-51 underwent dihydroxylation with the OsO4-NMO system to form diol (+)-52 as the only product in 97% yield. Diol (+)-52 was regioselectively protected in the presence of tert-butyldimethylsilane triflate, and triethylamine
PDF
Album
Review
Published 05 Jan 2021

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • tetracyclic compound 56. Dihydroxylation of freshly prepared 56 with OsO4 and then selective tosylation afforded 57 in 39% yield over two steps. Exposure of 57 to DBU upon heating gave the elimination product 58, which was subjected to an oxidative rearrangement with PDC to give enone 59 in 68% yield. Copper
  • produce 135 and 136 in 85% yield in the ratio of 1:1.16. A six-step synthesis from the major product 136 gave lactone 137. This compond was subjected to successive desilylation, OsO4-mediated dihydroxylation and subsequent oxidative cleavage of the C=C double bond with Pb(OAc)4 to give ketoaldehyde 138 in
PDF
Album
Review
Published 09 Dec 2020

Vicinal difluorination as a C=C surrogate: an analog of piperine with enhanced solubility, photostability, and acetylcholinesterase inhibitory activity

  • Yuvixza Lizarme-Salas,
  • Alexandra Daryl Ariawan,
  • Ranjala Ratnayake,
  • Hendrik Luesch,
  • Angela Finch and
  • Luke Hunter

Beilstein J. Org. Chem. 2020, 16, 2663–2670, doi:10.3762/bjoc.16.216

Graphical Abstract
  • ] was protected as the benzyl ether then subjected to a Sharpless asymmetric dihydroxylation reaction to furnish the diol 8 in modest yield. The diol 8 was then converted into the cyclic sulfate 9, which was ring-opened using TBAF to furnish the fluorohydrin 10. A Mosher ester analysis of the
  • fluorohydrin 10 suggested that the earlier dihydroxylation reaction had proceeded with 90% ee. The deoxyfluorination of 10 was then attempted using several reagents including DeoxoFluor, DeoxoFluor in combination with TMS-morpholine [29], and PyFluor [30]. The optimal yield of the threo-difluoroalkane 11 was
  • moiety throughout (Scheme 3). Thus, the α,β-unsaturated ester 15 [25] was carried through a similar sequence to that previously described, i.e., dihydroxylation, cyclic sulfate formation, ring-opening with TBAF (although note the regioselectivity [31]), deoxyfluorination, and deprotection to deliver the
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2020
Other Beilstein-Institut Open Science Activities