Search results

Search for "diol" in Full Text gives 384 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

A Diels–Alder probe for discovery of natural products containing furan moieties

  • Alyssa S. Eggly,
  • Namuunzul Otgontseren,
  • Carson B. Roberts,
  • Amir Y. Alwali,
  • Haylie E. Hennigan and
  • Elizabeth I. Parkinson

Beilstein J. Org. Chem. 2024, 20, 1001–1010, doi:10.3762/bjoc.20.88

Graphical Abstract
  • for 18 was more complicated, showing many more side products compared to other tested substrates (see Figure S7 in Supporting Information File 1). We hypothesize this is due to 18 undergoing a reaction in aqueous solutions to generate a geminal diol in place of an aldehyde, as has been previously
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2024

Synthesis of 2,2-difluoro-1,3-diketone and 2,2-difluoro-1,3-ketoester derivatives using fluorine gas

  • Alexander S. Hampton,
  • David R. W. Hodgson,
  • Graham McDougald,
  • Linhua Wang and
  • Graham Sandford

Beilstein J. Org. Chem. 2024, 20, 460–469, doi:10.3762/bjoc.20.41

Graphical Abstract
  • 13C{1H} NMR spectra contained signals supporting the presence of ketone (e.g., δC = 185.6 ppm for 5a) and ester (δC = 161.9 ppm for 5a) functionalities. Difluoroketoester products were found to hydrate readily to give gem-diol derivatives during aqueous work-up [39], thus reducing the efficiency of
  • extraction. Indeed, attempts to grow a single crystal of 5e from a mixture of EtOH and water led to the isolation of the corresponding gem-diol (Figure 3). There are very few examples of organic structures containing a C(OH)2–CF2–C fragment in the CCDC and only three acyclic examples (CSD 5.43 (Nov. 2021
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2024

Comparison of glycosyl donors: a supramer approach

  • Anna V. Orlova,
  • Nelly N. Malysheva,
  • Maria V. Panova,
  • Nikita M. Podvalnyy,
  • Michael G. Medvedev and
  • Leonid O. Kononov

Beilstein J. Org. Chem. 2024, 20, 181–192, doi:10.3762/bjoc.20.18

Graphical Abstract
  • prepared from the known sialic acid derivative 5 [36] with an 8,9-O-isopropylidene group by a three-step reaction sequence (see Scheme 2). Exhaustive chloroacetylation of hydroxy groups in diol 5 with chloroacetic anhydride and 2,4,6-collidine in CH2Cl2 gave bis-chloroacetate 6 (90% yield), which was
  • treated with 90% aq trifluoroacetic acid in CH2Cl2 to give diol 7 (70% yield) that was formed due to migration of a chloroacetyl group from O-7 to O-9. The structure of diol 7 was established by NMR spectroscopy, high-resolution mass spectrometry and X-ray diffraction analysis (see the Experimental
  • section and Supporting Information File 1 for the details). Diol 7 was converted into glycosyl donor 2 by O-trifluoroacetylation with trifluoroacetic anhydride and sodium trifluoroacetate under previously developed [36][55] conditions. Supramer analysis As we know that the concentrations of reactants can
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Secondary metabolites of Diaporthe cameroonensis, isolated from the Cameroonian medicinal plant Trema guineensis

  • Bel Youssouf G. Mountessou,
  • Élodie Gisèle M. Anoumedem,
  • Blondelle M. Kemkuignou,
  • Yasmina Marin-Felix,
  • Frank Surup,
  • Marc Stadler and
  • Simeon F. Kouam

Beilstein J. Org. Chem. 2023, 19, 1555–1561, doi:10.3762/bjoc.19.112

Graphical Abstract
  • × 50 mm, Phenomenex), and Nucleosil 120 OH Diol (7 µm, 250 × 21 mm, Machery-Nagel, Düren, Germany) columns maintained at room temperature. Normal phase p-HPLC equipped with DAD detector (Agilent 1100 Series, Santa Clara, USA) was connected to a Nucleosil 120 OH Diol column. Deionized water used for RP
  • fractions from the three repeated runs were combined to give three sub-fractions (D1–D3). All these sub-fractions D1 (12 mg), D2 (8 mg), and D3 (15.8 mg) were further separately purified over normal phase preparative HPLC with a DAD detector with a Nucleosil 120 OH Diol column (7 µm, 250 × 21 mm) used as
  • , tR = 11.21 min), and 7 (1.45 mg, yellow neat solid, tR = 15.00 min), 4 (2.45 mg, white amorphous powder, tR = 22.00 min), respectively. Successive purifications of series F (898 mg) over normal (CH2CH2/MeOH 92:8, Nucleosil 120 OH Diol column) and reversed-phase preparative HLPC (Gilson, PLC 2020
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • produces the diester 4.12 with an inversion of the configuration of the chiral carbon atom. Then, 4.12 was hydrolyzed in the presence of KOH to produce 4.10. The installation of the phosphocholine group was achieved following two schemes: a) Starting from the diol 4.10 (Figure 4C), tritylation and
  • also achieved in the last step (Figure 5) [73]. DIBALH (diisobutylaluminium hydride) in toluene was added to hexadecanol in dichloromethane at 0 °C (Figure 5) to form in situ a lithium alcoholate. Then, S-glycidol was added at rt to produce in 50% yield the diol 5.2 after a regioselective opening of
  • deprotection of diol with HCl, the aryl ether glycerol 10.3. The protection of the sn-2 position with a benzyl group was achieved by a classical tritylation of the primary alcohol, benzylation of the secondary alcohol and removing the trityl protecting group. The low yield of this three-step sequence is due to
PDF
Album
Review
Published 08 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Five new sesquiterpenoids from agarwood of Aquilaria sinensis

  • Hong Zhou,
  • Xu-Yang Li,
  • Hong-Bin Fang,
  • He-Zhong Jiang and
  • Yong-Xian Cheng

Beilstein J. Org. Chem. 2023, 19, 998–1007, doi:10.3762/bjoc.19.75

Graphical Abstract
  • . The known compounds are readily identified as eudesm-4(15)-ene-7β,11-diol (6) [17], rel-(2R,8S,8aR)-2-(1,2,6,7,8,8a-hexahydro-8,8a-dimethyl-2-naphthyl)propan-2-ol (7) [18], γ-costol (8) [19], (+)-9-hydroxyselina-4,11-dien-14-oic acid (9) [20] and 1β-hydroxyeremophila-7(11),9-dien-8-one (10) [21] by
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2023
Graphical Abstract
  • ’-diol (SPINOL)-derived phosphoric acids with different substituents in the 2,2’-positions of the aromatic framework have been extensively explored as axially chiral catalysts in the field of asymmetric transformations including aza-Friedel–Crafts reactions. In 2018, Nakamura and co-workers designed an
PDF
Album
Review
Published 28 Jun 2023

Asymmetric synthesis of a stereopentade fragment toward latrunculins

  • Benjamin Joyeux,
  • Antoine Gamet,
  • Nicolas Casaretto and
  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428–433, doi:10.3762/bjoc.19.32

Graphical Abstract
  • a 1,5-anti induction of the aldol reaction [18][19][20] based on chiral alkoxy partner 9. Furthermore, it could be envisaged to reduce the resulting β-hydroxyketone 7 in a diastereoselective manner to obtain a 1,3-diol. This synthetic strategy could thus bring new stereochemical opportunities to
  • %). This compound results from the transposition of the para-nitrobenzoyl (PNBz) group onto the 13-OH, which could be favoured by the steric hindrance of C-15 and a possible π–π stacking with the OPMB group. These PNBz esters were readily hydrolyzed to furnished diol 24 in 97% yield. The oxydation of the
PDF
Album
Supp Info
Letter
Published 03 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • yield diol 72. The 3R,4S configuration of compound 72 was expected based on Pettit’s work [16][17] and the optical purity of the obtained product was more than 95% by 1H NMR using [Eu(hfc)3] as a chiral shift reagent. Subsequent silylation followed by ester hydrolysis and removal of the pivaloyl group
  • alcohol 143 with pivaloyl chloride [64] and subsequent dihydroxylation of the double bond in 144 according to the Sharpless protocol using AD-mix-β [65], furnished the required syn-diol 145 in 59% yield and >99% ee. The hydroxy groups were protected [66] as TIPS ethers 146 and treatment with DIBAL-H led
  • to both, cleavage of the Piv group and reduction of the aldehyde yielding the diol 147. Selective oxidation [67] of the benzyl alcohol with MnO2 gave the compound 148, which was esterified with S-acetylthioacetic acid (129) and reduced to the benzyl alcohol 150. Deacetylation followed by
PDF
Album
Review
Published 29 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Investigation of cationic ring-opening polymerization of 2-oxazolines in the “green” solvent dihydrolevoglucosenone

  • Solomiia Borova and
  • Robert Luxenhofer

Beilstein J. Org. Chem. 2023, 19, 217–230, doi:10.3762/bjoc.19.21

Graphical Abstract
  • most intense peak (m/z = 991) (α), can be attributed to PEtOx chains that are terminated by a molecule of DLG diol with a potassium ion doping (Figure 3). However, α-distribution can also be attributed to DLG-initiated PEtOx. The presence of signals attributed to a polymer with a solvent fragment
  • which interfere with the cationic ring-opening polymerization of 2-oxazolines (Figure 5). It has been reported that DLG can undergo keto–enol tautomerism and form enols or can participate in nucleophilic addition reactions [49]. Furthermore, it can react with water to its hydrated form, a geminal diol
  • -diol terminating group carrying potassium and sodium ion doping, respectively. Signals at m/z = 3325 and m/z = 3341 could be attributed to methyl-initiated PEtOx with OH moieties carrying Na+ (δ) and K+ (γ), respectively. We also cannot exclude the possibility that these signals resulted from PEtOx
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Nostochopcerol, a new antibacterial monoacylglycerol from the edible cyanobacterium Nostochopsis lobatus

  • Naoya Oku,
  • Saki Hayashi,
  • Yuji Yamaguchi,
  • Hiroyuki Takenaka and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2023, 19, 133–138, doi:10.3762/bjoc.19.13

Graphical Abstract
  • , interconnection of the acyl and glyceryl units via an ester linkage was verified by three HMBC correlations from the terminal protons (H1, H2, and H1') of both units to the carboxy carbon (C1), leaving two protons to occupy C2' and C3' diol. Thus, compound 1 was determined to be a new monoacylglycerol and named
PDF
Album
Supp Info
Letter
Published 09 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • the commercially available 1,4-dithiane-2,5-diol (4) [26]. The diol 4 is commercially available in large quantities and is formally also a 1,4-dithiane derivative, but except for its dehydration to 1,4-dithiin, it is almost exclusively used as a source of mercapto acetaldehyde (of which it is a direct
PDF
Album
Review
Published 02 Feb 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • was carried out through a two-step sequence including dihydroxylation (K2OsO4·H2O, 90% yield) of 8 and oxidative cleavage (NaIO4, 91% yield) of the diol intermediate. Note that both ozonolysis and the one-pot Lemieux–Johnson oxidative cleavage process of 8 led instead to methyl ketone 11 in a
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • to the literature, a Sharpless dihydroxylation of benzyl tiglate (8) to form a chiral diol 9 was followed by a Parikh–Doering oxidation to give the corresponding product 10 in 62% yield (Scheme 4) [58][59]. Subsequent acryloylation in the presence of DMAP and hydroquinone gave the intramolecular
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A

  • Takumi Matsumoto,
  • Takefumi Kuranaga,
  • Yuto Taniguchi,
  • Weicheng Wang and
  • Hideaki Kakeya

Beilstein J. Org. Chem. 2022, 18, 1560–1566, doi:10.3762/bjoc.18.166

Graphical Abstract
  • SnCl2-catalyzed coupling reaction [20] between 21 and 22 afforded β-keto ester 23, which was then reduced to the corresponding β-hydroxy ester 24 by K-Selectride (dr > 20:1), and subsequent acidic removal of the acetonide furnished diol 25. The stereochemistry of the newly generated hydroxy group was
  • determined using the modified Mosher’s method [21]. Protection of diol 25 by tert-butyl(dimethyl)silyl (TBS) group followed by selective deprotection of the primary alcohol led to 27. Finally, acid 7 was obtained from alcohol 27 through the same two-step oxidation used to obtain compound 10. Having
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

A study of the DIBAL-promoted selective debenzylation of α-cyclodextrin protected with two different benzyl groups

  • Naser-Abdul Yousefi,
  • Morten L. Zimmermann and
  • Mikael Bols

Beilstein J. Org. Chem. 2022, 18, 1553–1559, doi:10.3762/bjoc.18.165

Graphical Abstract
  • gives access to 6A-mono- and 6A,D diol (3) in high yields and purity, and by extension of this method further deprotection on the primary [10][11][12] and secondary rim can be made [13][14][15]. The reaction of 2 with DIBAL leads quite rapidly to diol 3 and then much slower to triol 4 and tetrol 5
  • and 13C NMR (800/201 MHz), COSY, HSQC, TOCSY, and ROESY (Supporting Information File 1) which gave the NMR assignments shown in Table 2 and identification of 8 as the 6A,D diol. The most significant observations in this assignment were 1) the compound is symmetric with only 3 different sugar residues
  • C134H137Cl8O30+, 2511.6706 (71.9%); found, 2511.69097. Structure of α-cyclodextrins 1–10. The reaction of perbenzylated α-cyclodextrin with iBu2AlH. Reaction conditions for the partial debenzylation of 7. The solvent was always toluene. 1H and 13C NMR (800/201 MHz, CDCl3) chemical shifts of diol 8. 1H and 13C
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2022

Efficient synthesis of aziridinecyclooctanediol and 3-aminocyclooctanetriol

  • Emine Salamci and
  • Ayse Kilic Lafzi

Beilstein J. Org. Chem. 2022, 18, 1539–1543, doi:10.3762/bjoc.18.163

Graphical Abstract
  • cis,cis-1,3-cyclooctadiene. Results and Discussion The synthesis of the diol 5, which was prepared by reduction of the endoperoxide 4 with zinc was carried out as described in the literature [18]. Treatment of the diol 5 with benzyl bromide and NaH in DMF gave the corresponding (dibenzyloxy
  • )cyclooctene 6 in 70% yield (Scheme 1). Oxidation of the dibenzylated compound 6 with OsO4/NMO provided the corresponding diol 7 in 90% yield. The exact configuration of 7 was confirmed by 1H and 2D NMR spectroscopic data. Next, mesylation of the hydroxy groups in 7 with MsCl in pyridine yielded dimesylate 8
  • in 90% yield. Thus, the dimesylate 8, which is one of the most relevant precursors for the synthesis of aminocyclitols, was synthesized from the diol 7. The structure of compound 8 was assigned on the basis of NMR spectroscopy. In the 1H NMR spectrum, we observed that methyl signals of the mesylate
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2022

Supramolecular approaches to mediate chemical reactivity

  • Pablo Ballester,
  • Qi-Qiang Wang and
  • Carmine Gaeta

Beilstein J. Org. Chem. 2022, 18, 1463–1465, doi:10.3762/bjoc.18.152

Graphical Abstract
  • rotaxanes. MIMs show interesting structural and topological features and offer conceptually new possibilities as catalysts. In their minireview, Krajnc and Niemeyer [21] highlighted the use of the axially chiral 1,1'-binaphthyl-2,2'-diol (BINOL) unit as a stereogenic element in MIMs. The authors comment on
PDF
Editorial
Published 14 Oct 2022
Graphical Abstract
  • intimate affinity of unsymmetrical salens chelating with metals. The HKR of epichlorohydrin with water catalyzed by Co–salens 2 was studied and chiral 2f showed an outstanding catalytic ability to afford the diol product in high ee (98%). A library of α-aryloxy alcohols was thereafter synthesized through
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Sinensiols H–J, three new lignan derivatives from Selaginella sinensis (Desv.) Spring

  • Qinfeng Zhu,
  • Beibei Gao,
  • Qian Chen,
  • Tiantian Luo,
  • Guobo Xu and
  • Shanggao Liao

Beilstein J. Org. Chem. 2022, 18, 1410–1415, doi:10.3762/bjoc.18.146

Graphical Abstract
  • quite similar to that of (E)-5,5′-(but-2-ene-1,4-diyl)bis(3-methoxybenzene-1,2-diol) [15]. The main difference was that the hydroxy group at C-4 and C-4′ in (E)-5,5′-(but-2-ene-1,4-diyl)bis(3-methoxybenzene-1,2-diol) was substituted by a methoxy group in 2, which was confirmed by the HMBC correlation
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
  • . Analysis of the NMR data of the Mosher's derivatives of 8 suggested (S) configuration for the alcohol (−)-3 [16]. On the other hand, enantiopure acetate (+)-(R)-9 was transformed into diol (+)-(R)-7 by the addition of an excess of MeMgBr. Finally, these enantiopure compounds, α-hydroxyallene (−)-(S)-3 and
  • diol (+)-(R)-7, can be used to prepare both enantiomers of compound 1 following the procedures shown in Scheme 2. Unfortunately, once the racemic synthesis was successfully completed and the chiral design was fulfilled, it was found that the spectroscopic data of compound 1 did not match neither with
  • signals of the oxygenated carbons (C2 and C5). The same behavior pattern can be observed in the 1H NMR data. This made us think that the natural product of T. mendocina could have an acyclic skeleton instead of a dihydrofuran one. For this reason, we propose this compound should be the diol called
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • 27. Subsequent oxidation gave α-ketoester 28 which was used in an intramolecular, Lewis acid-mediated aldol reaction, presumably via tridentate complex transition state III, to give diol 29 as a single diastereomer. Inversion of the secondary alcohol and deprotection gave preussochromone D (30
PDF
Album
Review
Published 15 Sep 2022

Electrochemical formal homocoupling of sec-alcohols

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masashi Shiota,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2022, 18, 1062–1069, doi:10.3762/bjoc.18.108

Graphical Abstract
  • sacrificial anode would be a promising approach toward synthetically valuable vic-1,2-diol scaffolds without using low-valent metal reductants. However, sacrificial anodes produce an equimolar amount of metal waste, which may be a major issue in terms of sustainable chemistry. Herein, we report a sacrificial
  • electrolysis; Introduction Carbon–carbon bond formation is one of the most fundamental and important reactions in synthetic organic chemistry. Reductive coupling of carbonyl compounds known as pinacol coupling would be a powerful method to construct vic-1,2-diol scaffolds through C–C bond formation [1][2
  • substrate 1k gave 2k in a less satisfactory yield but with good diastereoselectivity. 1-Phenyl-1-propanol (1l) was successfully transformed into the desired product 2l in a moderate yield. In addition, ethyl lactate (1m) provided the corresponding vic-1,2-diol 2m in 60% yield but with low
PDF
Album
Supp Info
Letter
Published 22 Aug 2022
Other Beilstein-Institut Open Science Activities