Search results

Search for "hydroboration" in Full Text gives 50 result(s) in Beilstein Journal of Organic Chemistry.

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • ). Reaction with a Grignard reagent, hydroboration and oxidation of the organoborane were also possible in high yields (to 188). Similar to ketoprofen bioisostere 189, its inversely substituted isomer iso-189 was also accessible from 185a. Iwabuchi and co-workers also investigated the biological activity of
PDF
Album
Review
Published 19 Apr 2024

Confirmation of the stereochemistry of spiroviolene

  • Yao Kong,
  • Yuanning Liu,
  • Kaibiao Wang,
  • Tao Wang,
  • Chen Wang,
  • Ben Ai,
  • Hongli Jia,
  • Guohui Pan,
  • Min Yin and
  • Zhengren Xu

Beilstein J. Org. Chem. 2024, 20, 852–858, doi:10.3762/bjoc.20.77

Graphical Abstract
  • Abstract We confirm the previously revised stereochemistry of spiroviolene by X-ray crystallographically characterizing a hydrazone derivative of 9-oxospiroviolane, which is synthesized by hydroboration/oxidation of spiroviolene followed by oxidation of the resultant hydroxy group. An unexpected thermal
  • boron migration occurred during the hydroboration process of spiroviolene that resulted in the production of a mixture of 1α-hydroxyspiroviolane, 9α- and 9β-hydroxyspiroviolane after oxidation. The assertion of the cis-orientation of the 19- and 20-methyl groups provided further support for the revised
  • synthetic intermediate of 2 to spiroviolene. By taking advantage of the DFT transition state analysis of the hydroboration reaction of a key intermediate, as well as NOE correlation analysis of the resultant product, Snyder and co-workers have reassigned the right structure of spiroviolene to 1. However
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • diversity, low cost, and versatile applications. This article overviews applications of NHC–Cu(I) complexes as catalysts in organic synthesis over the last 12 years, which include hydrosilylation reactions, conjugate addition, [3 + 2] cycloaddition, A3 reaction, boration and hydroboration, N–H and C(sp2)–H
  • site-selective NHC–Cu-catalyzed hydroboration of enantiomerically enriched allenes and conversion to the corresponding β-vinyl ketones demonstrates the importance of the strategy. An example is shown below (Scheme 44). 2.2.4 Reaction with organozinc reagents: Organozinc reagents, such as diethylzinc
  • (I)–alkyne complex becomes much smaller than in the uncomplexed alkyne. 2.5 Boration and hydroboration NHC–Cu(I) complexes have also been successfully applied to catalyze the boration and hydroboration of carbonyl compounds, allenes, and similar substrates to obtain boronated products [80]. Clark and
PDF
Album
Review
Published 20 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
PDF
Album
Review
Published 04 May 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • the formation of compound 171, which was methylated and subjected to a hydroboration reaction using 9-BBN. Further oxidation gave compound 173 in 65% yield. Hydrolysis of 173 gave the corresponding seco-acid 174, which was subjected to a Mitsunobu reaction, to give isocorniculatolide B (10) in 12
PDF
Album
Review
Published 29 Mar 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • and develop new catalytic processes, examples of which are the focus of this review. Keywords: catalysis; group 13 exchange; hydroboration; main group; transborylation; Introduction Group 13 compounds have found widespread use in stoichiometric organic transformations, typically in the
  • -catalysed hydroboration of alkynes was first reported by Periasamy using N,N-diethylaniline·BH3 as the catalyst and HBcat as the turnover reagent (terminal reductant) [48][49]. This was followed by Hoshi who used dialkylboranes, 9-borabicyclo(3.3.1)nonane (H-B-9-BBN) and dicyclohexylborane (Cy2BH) to
  • catalyse the hydroboration of alkynes with HBcat [50]. Hoshi later reported that Cy2BH [51] and in situ generated bis(pentafluorophenyl)borane, Piers’ borane [52], catalysed the hydroboration of alkynes with HBpin, to give alkenyl pinacol boronic esters. Tris(2,4,6-trifluorophenyl)borane [53], tris(3,4,5
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • ideal diversification point to access (−)-curvulamine (171) by CBS reduction, bipolamines D (173) and E (172) by additional BH3·DMS hydroboration, and bipolamine G (174) initially by dihydroxylation of the alkene moiety with osmium tetroxide, followed by acidic etherification and reduction. Finally
  • , bipolamine I (176) was obtained from 169 via a samarium diiodide reduction of the mesylate, followed by sodium borohydride reduction of the ketone, hydroboration, and base-mediated cyclization. Flow-controlled divergent synthesis of aporphine and morphinandienone natural products (Felpin 2022) [92
PDF
Album
Review
Published 02 Jan 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • the PMB protecting group, Dess–Martin oxidation, and SmI2-induced cyclization. This last step was highly selective, giving solely the intermediate 17. The synthesis was then pursued by the hydroboration–oxidation of the monosubstituted alkene, followed by stereoselective epoxidation of the 1,1
PDF
Album
Review
Published 12 Dec 2022

B–N/B–H Transborylation: borane-catalysed nitrile hydroboration

  • Filip Meger,
  • Alexander C. W. Kwok,
  • Franziska Gilch,
  • Dominic R. Willcox,
  • Alex J. Hendy,
  • Kieran Nicholson,
  • Andrew D. Bage,
  • Thomas Langer,
  • Thomas A. Hunt and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2022, 18, 1332–1337, doi:10.3762/bjoc.18.138

Graphical Abstract
  • relies upon stoichiometric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is reported. Good yields (48–95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic studies support the proposal
  • of a double B–N/B–H transborylation mechanism. Keywords: boron; catalysis; hydroboration; nitrile; transborylation; Introduction Primary amines are prevalent throughout organic synthesis, finding regular application in materials chemistry, pharmaceuticals, and agrochemicals (Scheme 1a) [1][2][3
  • ]. Traditionally, the reduction of nitriles to primary amines relied on stoichiometric hydride reagents [4]. Current catalytic methods for nitrile reduction, hydrogenation [5][6] or hydroboration [7][8], generally rely on metal catalysts, designer ligands, forcing reaction conditions (such as elevated temperatures
PDF
Album
Supp Info
Letter
Published 26 Sep 2022

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
PDF
Album
Review
Published 12 May 2021

Progress in the total synthesis of inthomycins

  • Bidyut Kumar Senapati

Beilstein J. Org. Chem. 2021, 17, 58–82, doi:10.3762/bjoc.17.7

Graphical Abstract
  • -catalyzed hydroboration of the terminal acetylene in 127 gave (E,E)-128 in good yield and with complete stereocontrol (Scheme 18). To accomplish the key Suzuki coupling of dienylboronic ester 128, the necessary alkenyl iodides (Z)- and (E)-130 were prepared from the propargyl alcohol (14) in good yields
  • synthesis of inthomycin A ((+)-1). In the beginning, conversion of enyne 127 to the corresponding (Z,E)-dienylboronic ester 128 was investigated in the presence of rhodium(I)-catalyzed anti-selective hydroboration [72] under several conditions. Unfortunately, the yield of the desired (Z,E)-128 was found to
PDF
Album
Review
Published 07 Jan 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • conditions to afford alkene (±)-39. Hydroboration of (±)-39 with the borane–THF complex followed by oxidation of the obtained intermediate led to the mixture of alcohols (±)-40 + (±)-41 with yields of 31% and 39%, respectively. The 1H NMR spectrum confirmed the structure and stereochemistry of alcohol (±)-41
PDF
Album
Review
Published 05 Jan 2021

Amine–borane complex-initiated SF5Cl radical addition on alkenes and alkynes

  • Audrey Gilbert,
  • Pauline Langowski,
  • Marine Delgado,
  • Laurent Chabaud,
  • Mathieu Pucheault and
  • Jean-François Paquin

Beilstein J. Org. Chem. 2020, 16, 3069–3077, doi:10.3762/bjoc.16.256

Graphical Abstract
  • hydrogen reservoirs [40], as reducing agents in various transformations, including the reduction of aldehydes, amides and ketones, reductive aminations, alkene hydroboration, and carbon bond forming reaction [41][42], as well as various boronate and borinic acid precursors [43][44][45][46][47]. More
  • [48]. The first step would involve the formation of a trialkylborane species via the hydroboration of the alkene, as previously observed by 11B NMR spectroscopy [48][49]. In the presence of oxygen, the trialkylborane would, similarly to Et3B, generate an alkyl radical. The latter would react with
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Dec 2020

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

  • Lívia Dikošová,
  • Júlia Laceková,
  • Ondrej Záborský and
  • Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319, doi:10.3762/bjoc.16.112

Graphical Abstract
  • isoxazolidin-4-ols. The strategy relies on a highly regio- and trans-stereoselective hydroboration–oxidation reaction of the 4,5-unsubstituted 2,3-dihydroisoxazoles with basic hydrogen peroxide. The consecutive oxidation/reduction route, sequentially employing Dess–Martin periodinane and ʟ-selectride, is used
  • -hydroxypyrrolidines certainly makes the 4-hydroxyisoxazolidines important and valuable structural fragments in drug discovery. Keywords: 2,3-dihydroisoxazoles; diastereoselectivity; heterocycles; hydroboration–oxidation; isoxazolidin-4-ols; Introduction 2,3-Dihydroisoxazoles (often referred to as 4-isoxazolines
  • alcohols. As a consequence, we assumed that the hydroboration–oxidation reaction of 2,3-dihydroisoxazoles would be an excellent way to prevent this obstacle. Recently, Kang et al. [29] reported the first hydroboration–oxidation reaction of the 5-substituted 4-isoxazolines even though the access to 4
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • the protected ᴅ,ʟ-N-Boc-2-bromophenylalanine (89) using a Stille coupling reaction to give the o-vinyl derivative 90 as key intermediate. A hydroboration reaction of compound 90 afforded the primary alcohol 91, which was directly fluorinated and deprotected to give the free amino acids 93 (ᴅ and ʟ
PDF
Album
Review
Published 15 May 2020

Combining enyne metathesis with long-established organic transformations: a powerful strategy for the sustainable synthesis of bioactive molecules

  • Valerian Dragutan,
  • Ileana Dragutan,
  • Albert Demonceau and
  • Lionel Delaude

Beilstein J. Org. Chem. 2020, 16, 738–755, doi:10.3762/bjoc.16.68

Graphical Abstract
  • catalyst (3 mol %) to give the corresponding 1,3-diene intermediate in 85% yield (Scheme 16). The subsequent hydroboration and oxidation to homoallylic alcohol, followed by a palladium-catalyzed Heck cross-coupling, an allylic oxidation with SeO2, mesylation, and deprotection, afforded (−)-galanthamine (13
  • on a Diels–Alder cycloaddition, an intramolecular Mitsunobu reaction, a [3,3]-sigmatropic rearrangement, and a ring-closing metathesis. As an alternative to this approach, Clark et al. [86] efficiently performed a sequential Ru-catalyzed enyne metathesis in combination with a hydroboration, and an
  • the corresponding bicyclic dienic scaffolds. The subsequent hydroboration and aminohydroxylation carried out on these bicyclic dienes provided the AB subunit as a key intermediate component of manzamines A (16a) and E (16b, Scheme 19). Eventually, several highly elaborated transformations of the AB
PDF
Album
Review
Published 16 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • . This step is then followed by treatment of the reaction intermediate with an electrophile to deliver the desired borylated compound [98]. An efficient Cu-catalyzed (via in situ formed [(R)-DTBM-Segphos]CuH) protocol for an asymmetric net hydroboration of internal alkenes 343 with high regio- and
PDF
Album
Review
Published 15 Apr 2020

Chiral terpene auxiliaries V: Synthesis of new chiral γ-hydroxyphosphine oxides derived from α-pinene

  • Anna Kmieciak and
  • Marek P. Krzemiński

Beilstein J. Org. Chem. 2019, 15, 2493–2499, doi:10.3762/bjoc.15.242

Graphical Abstract
  • ]-sigmatropic rearrangement of allyldiphenylphosphinites, obtained from (1R,2R,4S,5R)-3-methyleneneoisoverbanol and (1R,2R,3R,5R)-4-methyleneneoisopinocampheol, to allylphosphine oxides. Hydroxy groups were introduced stereoselectively through a hydroboration–oxidation reaction proceeding from the less hindered
  • (III) chloride in methanol in 88% yield (Scheme 1). The synthesis of allylic alcohol 11, a regioisomer of 6, started again from (1R)-α-pinene (1, Scheme 2). Hydroboration of (1R)-α-pinene with borane–dimethyl sulfide adduct (BMS) and crystallization of the product diisopinocampheylborane (dIpc2BH, 84
  • % yield. The allylic diphenylphosphine oxide 21 was subjected to the hydroboration–oxidation reaction introducing stereoselectively the hydroxy group. Hydroboration was carried out with an excess of borane–dimethyl sulfide adduct followed by the oxidation step. The standard C–B bond oxidation protocol
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • include epoxidation resulting in 3,4-epoxy-7,18-dolabelladien-14-one (13) or hydroboration of 3,7,18-dolabellatriene (12, Scheme 1) that has been previously biotechnologically manufactured using CotB2W288G [103]. Another successful example is the oxidative transformation of cattleyene and phomopsen [104
PDF
Album
Review
Published 02 Oct 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • , recyclable catalyst in the N-arylation of indoles [45][46]. Copper catalysts have shown exceptional enantioselectivity for reactions such as hydrosilylation, hydroboration, and heterogeneous as well as homogeneous hydrogenation [47][48][49]. Also, the copper salts found used as oxidants in a number of
PDF
Album
Review
Published 19 Jul 2019

Anomeric sugar boronic acid analogues as potential agents for boron neutron capture therapy

  • Daniela Imperio,
  • Erika Del Grosso,
  • Silvia Fallarini,
  • Grazia Lombardi and
  • Luigi Panza

Beilstein J. Org. Chem. 2019, 15, 1355–1359, doi:10.3762/bjoc.15.135

Graphical Abstract
  • position. The analogues were obtained by hydroboration of proper open-chain terminal alkenes that, after quenching with water, spontaneously afforded cyclic boronic acids with hemiacetal-like structures. Keywords: antitumor agents; boron neutron capture therapy; boronic acid; hydroboration; sugar analogue
  • , where, among other derivatives, 1,2-dideoxy-ᴅ-glucopyranos-2-ylboronic acid has been synthesized through a regio- and stereoselective hydroboration of persilylated glucal. Considering the different substitution positions for the boronic acid in the sugar skeleton, we were curious to observe the chemical
  • the 2,3-dideoxy derivatives, whose structures are reported in Figure 2, in order to have a reliable synthesis and to get preliminary information on their stability. We planned a strategy based on a hydroboration reaction of terminal, suitably functionalized alkenes, which can be obtained from properly
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2019

Stereo- and regioselective hydroboration of 1-exo-methylene pyranoses: discovery of aryltriazolylmethyl C-galactopyranosides as selective galectin-1 inhibitors

  • Alexander Dahlqvist,
  • Axel Furevi,
  • Niklas Warlin,
  • Hakon Leffler and
  • Ulf J. Nilsson

Beilstein J. Org. Chem. 2019, 15, 1046–1060, doi:10.3762/bjoc.15.102

Graphical Abstract
  • using a highly diastereoselective hydroboration of C1-exo-methylene pyranosides giving inhibitors with fourfold or better selectivity for galectin-1 over galectin-3, -4C (C-terminal CRD), -4N (N-terminal CRD), -7, -8C, -8N, -9C, and -9N and dissociation constants down to 170 µM. Keywords: C-galactoside
  • ; galectin-1; hydroboration; inhibition; selective; triazole; Introduction Galectins are defined by a typically about 130 amino acid carbohydrate recognition domain (CRD) that binds to carbohydrates with at least one β-galactose subunit within a binding pocket large enough to accommodate a tetrasaccharide
  • synthesis pathway involving a diastereoselective hydroboration towards (aryltriazolyl)methyl galactopyranosyl derivatives and determined the viability of this as a scaffold for galectin inhibitors by screening a library of fourteen different products against galectins -1, -3, -4C (C-terminal CRD), -4N (N
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2019

An efficient synthesis of the guaiane sesquiterpene (−)-isoguaiene by domino metathesis

  • Yuzhou Wang,
  • Ahmed F. Darweesh,
  • Patrick Zimdars and
  • Peter Metz

Beilstein J. Org. Chem. 2019, 15, 858–862, doi:10.3762/bjoc.15.83

Graphical Abstract
  • of the aldehyde function as the dimethyl acetal [16][17][18], hydroboration and oxidative work-up of 10 provided a mixture of epimeric alcohols 11 that was unified by Ley–Griffith oxidation [19] to give ketone 12 [20]. Subsequent Wittig reaction with ylide 13 and acetal cleavage of the resultant
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2019
Other Beilstein-Institut Open Science Activities