Search results

Search for "molecular oxygen" in Full Text gives 83 result(s) in Beilstein Journal of Organic Chemistry.

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • exploited for the construction of phenanthridine 6-carboxylates (Scheme 12). Notably, the process occurred in water under metal-free conditions in the presence of rose bengal (5 mol %) and made use of molecular oxygen as the terminal oxidant. Thus, N-biarylglycine esters 12.1a–d promoted the reductive
  • phosphate base (50 mol %). Thus, the latter played a key role in the PCET event which triggered the activation of the N–H bond in 18.1a–d and led to the N-centered radicals 18.2·a–d. Ensuing cyclization onto the pendant aromatic group, followed by rearomatization enabled by molecular oxygen, gave the
PDF
Album
Review
Published 25 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • attractive because the reagents involved in the reaction process are simple and inexpensive, plus they only require molecular oxygen or air. In addition, disulfide-catalyzed cyclization reactions are also very effective for the generation of five- and six-membered rings. The unique high selectivity and
PDF
Album
Review
Published 23 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • -position to the oxime group (70i,j) were obtained with good yields. The formation of 70i and 70j is impossible through an intermediate similar to intermediate 68 in Scheme 24. Oxidative cyclization of N-benzyl amidoximes 71 was realized [117] under the action of molecular oxygen with the formation of
  • 1,2,4-oxadiazolines 88 by oxidative cyclization of amidoximes 87 under the action of molecular oxygen and visible light in the presence of catalytic amounts of 2,4,6-tris(4-fluorophenyl)pyrilium tetrafluoroborate (T(p-F)PPT) was proposed (Scheme 32) [122]. Pyrrolidinyl oxime derivatives having both
  • endocyclic, high stereoselectivity was observed with the formation of trans-products (examples 106c and 108b). The oxidative cyclization of β,γ-unsaturated oximes 109 under the action of molecular oxygen and catalytic amounts of bis(5,5-dimethyl-1-(4-methylpiperazin-1-yl)hexane-1,2,4-trione)cobalt(II) (Co
PDF
Album
Review
Published 05 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • state PC. In most cases, Sub* is in the triplet state if it is an organic molecule. A common exception to this is molecular oxygen, which upon excitation attains a more reactive singlet state. In the third mode of activation, atom transfer (AT, Scheme 1, box 3), the excited state photocatalyst PC* can
PDF
Album
Review
Published 29 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • involves energy transfer to surrounding molecules, such as molecular oxygen, heterocycles and other relevant molecules [15][16][17]. The excited states of porphyrins are also both potent oxidants and reductants when compared to the ground state. This phenomenon can be measured by the comparison of the
  • molecular oxygen (triplet state). In this process, well-known singlet oxygen (1O2) is generated. Singlet oxygen can be considered a very versatile reagent in organic synthesis since it promotes many mild oxidation processes instead of combustion [23][57][58][59][60]. This excited state form of molecular
  • brominated tin porphyrin (SnTBPP) as monomer (Scheme 47). The irradiation of this material in the presence of both sulfides and molecular oxygen furnished a variety of sulfoxides in 70–97% yields. The SnPor@PAF presented the same photocatalytic activity of its monomer (SnTBPP) with the advantage of its easy
PDF
Album
Review
Published 06 May 2020

Copper-promoted/copper-catalyzed trifluoromethylselenolation reactions

  • Clément Ghiazza and
  • Anis Tlili

Beilstein J. Org. Chem. 2020, 16, 305–316, doi:10.3762/bjoc.16.30

Graphical Abstract
  • and molecular oxygen as the oxidant, the substrates were successfully converted to the trifluoromethylselenylated analogs in good to very good yields. The substrate scope highlighted a broad functional group tolerance, including electron-withdrawing and -donating groups, heterocycles, and ferrocene
PDF
Album
Review
Published 03 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • of molecular oxygen as an oxidant. Although various photoredox catalysts and solvents were examined, the best results were obtained with photoredox catalyst 6 in chlorinated solvents. In the absence of a photoredox catalyst, the goup did not observe any product formation. A list of products assembled
  • observed a number of interesting facts, viz: (i) the reaction proceeded with environmentally friendly molecular oxygen as oxidant, (ii) water was the only byproduct of the reaction, (iii) no reaction occurred without the involvement of a photocatalyst, (iv) high yields were obtained with electron-donating
  • photolysis. The mechanism involved in this transformation is shown in Figure 20. Aryl C–H halogenation Aerobic bromination of arenes: In another experiment, Ohkubo et al. reported that for aerobic aryl C–H brominations, HBr can be utilized with photoredox catalyst 2 in the presence of molecular oxygen to
PDF
Album
Review
Published 26 Feb 2020

Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst

  • Abhijit Paul,
  • Debnath Chatterjee,
  • Srirupa Banerjee and
  • Somnath Yadav

Beilstein J. Org. Chem. 2020, 16, 140–148, doi:10.3762/bjoc.16.16

Graphical Abstract
  • of indoles using Pd(OAc)2 and Pd(II)/polyoxometallate, respectively, as a catalyst and molecular oxygen as the oxidant [26][27]. Verma and co-workers used the reaction between indoles and alkenes in the presence of a Pd(OAc)2 catalyst, a Cu(OAc)2 oxidant, and a 2-(1-benzotriazolyl)pyridine ligand [28
  • ]. Noël and co-workers reported the C3–H olefination of indoles using Pd(OAc)2 as a catalyst and molecular oxygen as the oxidant under continuous flow conditions [29]. Jia et al. reported the synthesis of 3-alkenylindoles using Pd(OAc)2 as the catalyst and MnO2 as the oxidant under ball milling conditions
  • [30]. Das and co-workers reported the C3–H alkenylation of 7-azaindole using Pd(OAc)2 as a catalyst, Ph3P as a ligand, and Cu(OTf)2 as an oxidative cocatalyst, with molecular oxygen as the oxidant [31]. Carrow and co-workers reported mechanistic, kinetic, and selectivity studies of the C–H
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2020

Excited state dynamics for visible-light sensitization of a photochromic benzil-subsituted phenoxyl-imidazolyl radical complex

  • Yoichi Kobayashi,
  • Yukie Mamiya,
  • Katsuya Mutoh,
  • Hikaru Sotome,
  • Masafumi Koga,
  • Hiroshi Miyasaka and
  • Jiro Abe

Beilstein J. Org. Chem. 2019, 15, 2369–2379, doi:10.3762/bjoc.15.229

Graphical Abstract
  • similar to that of PIC and because the fast decay component does not depend on the molecular oxygen, the fast and slow decay components can be assigned to the biradical form generated by the C–N bond breaking and the T1 state of Benzil-PIC, respectively. It is worth mentioning that the T1 state of Benzil
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • halide substituent in the product which was successfully overcome by this protocol along with the synthesis of pyrazines and pyrimidines in high yield (Scheme 3). Furthermore, easy functionalization of the products from the viewpoint of reactive halide made them valuable synthons. Molecular oxygen used
PDF
Album
Review
Published 19 Jul 2019

Diastereo- and enantioselective preparation of cyclopropanol derivatives

  • Marwan Simaan and
  • Ilan Marek

Beilstein J. Org. Chem. 2019, 15, 752–760, doi:10.3762/bjoc.15.71

Graphical Abstract
  • attention to their stereoselective oxidation reaction (Scheme 5). Considering electrophilic oxidation processes of organometallic species, molecular oxygen seems to be the most obvious choice due to its abundancy and low cost. Nevertheless, the reaction of molecular oxygen with a organocopper species
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Selective benzylic C–H monooxygenation mediated by iodine oxides

  • Kelsey B. LaMartina,
  • Haley K. Kuck,
  • Linda S. Oglesbee,
  • Asma Al-Odaini and
  • Nicholas C. Boaz

Beilstein J. Org. Chem. 2019, 15, 602–609, doi:10.3762/bjoc.15.55

Graphical Abstract
  • ) scaffold have been intensely studied for their ability to mediate hydrogen atom abstraction using a terminal oxidant of molecular oxygen [40][41][42][43][44][45]. NHPI has also been used in the effective C–H to C–O functionalization of benzylic positions using oxidants other than molecular oxygen including
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2019

Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions

  • Nicholas L. Reed,
  • Madeline I. Herman,
  • Vladimir P. Miltchev and
  • Tehshik P. Yoon

Beilstein J. Org. Chem. 2019, 15, 351–356, doi:10.3762/bjoc.15.30

Graphical Abstract
  • dioxygen for this purpose is frequently exploited to effect synthetically useful copper-catalyzed aerobic oxidation reactions [27][28]. However, the use of molecular oxygen as a terminal oxidant presents unique challenges in photoredox chemistry. Triplet dioxygen rapidly quenches the excited state of most
PDF
Album
Supp Info
Letter
Published 05 Feb 2019

Degenerative xanthate transfer to olefins under visible-light photocatalysis

  • Atsushi Kaga,
  • Xiangyang Wu,
  • Joel Yi Jie Lim,
  • Hirohito Hayashi,
  • Yunpeng Lu,
  • Edwin K. L. Yeow and
  • Shunsuke Chiba

Beilstein J. Org. Chem. 2018, 14, 3047–3058, doi:10.3762/bjoc.14.283

Graphical Abstract
  • purification of the desired products. A combination of triethylborane (Et3B) and molecular oxygen can also initiate the reaction at lower temperature (e.g., room temperature), while the employment of Et3B is hampered due to its pyrophoric nature under aerobic conditions as well as undesired Et3B-mediated
PDF
Album
Supp Info
Full Research Paper
Published 13 Dec 2018

Synthesis of indole–cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process

  • Muthumani Muthu,
  • Rakkappan Vishnu Priya,
  • Abdulrahman I. Almansour,
  • Raju Suresh Kumar and
  • Raju Ranjith Kumar

Beilstein J. Org. Chem. 2018, 14, 2907–2915, doi:10.3762/bjoc.14.269

Graphical Abstract
  • cyclization with the carbonyl to give 11, which subsequently undergoes dehydration to yield the cyclododeca[b]pyridine-3-carbonitrile 12. The intermediate 12 upon oxidative aromatization by molecular oxygen as the sole oxidant yields the indole–cyclododeca[b]pyridine-3-carbonitrile 7f. This four-component
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2018
Graphical Abstract
  • carbonyl of acetylacetone 90 to form enamine intermediate II. In the next step, hydroxyl radicals are produced through activation of molecular oxygen in the presence of SSA. Intermediate III is created via the addition of a hydroxyl radical to enamine II. This intermediate loses hydrogen radical to form
PDF
Album
Review
Published 01 Nov 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • reaction specifically investigated the dimerization of thiols. Some of the experiments carried out by the group were in a flow chemistry set up, exemplifying the scalability of the procedure. In addition, the oxidant that achieves the transformation is molecular oxygen, making this a very sustainable route
  • benzofused heterocycles (indole etc.) – such as benzimidazoles or tetrazolopyridines are often seen in medicinal chemistry. Singh et al. reported a method for preparing 3-arylnitrobenzimidazoles from 2-aminopyridines and nitroalkanes, using green LED Eosin Y photocatalysis, with molecular oxygen as the
PDF
Album
Review
Published 03 Aug 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • easy-to-handle potassium (trifluoromethyl)trimethylborate K+[CF3B(OMe)3]− as a CF3 source, molecular oxygen as the oxidant. However, another side reaction, substitution of the boronate by methoxy groups originating from the CF3 source, arose in this transformation. At the same year, the group of Fu
PDF
Album
Review
Published 17 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • reaction conditions. In 2016, Wang and co-workers reported the thiocyanation reaction of indoles with TiO2/MoS2 nanocomposite as heterogeneous photoredox catalyst and molecular oxygen as terminal oxidant (Scheme 27) [62]. They propose that the efficiency of their reaction is due to a separation of
  •  28) [63]. The reaction mechanism is different from the previous examples. The photoexcited state of Eosin Y can be quenched reductively by tertiary amines to form an Eosin Y radical anion and an amine radical cation. Molecular oxygen regenerates Eosin Y and is reduced to its superoxide radical anion
  • Eosin Y radical anion. After radical addition of the thiocyanate radical to styrene, the anti-Markovnikov intermediate can form a peroxy radical species with molecular oxygen. Consecutive rearrangements give a β-hydroxythiocyanate, which undergoes fast cyclization to the 5-membered heterocyclic product
PDF
Album
Review
Published 05 Jan 2018

Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations

  • Andrea Porcheddu,
  • Evelina Colacino,
  • Giancarlo Cravotto,
  • Francesco Delogu and
  • Lidia De Luca

Beilstein J. Org. Chem. 2017, 13, 2049–2055, doi:10.3762/bjoc.13.202

Graphical Abstract
  • amounts of the catalyst as well as molecular oxygen instead of air did not result in a significant improvement (Scheme 2, left side). To our great surprise, using Stahl’s catalyst, the mechanically activated oxidation of the model substrate 1a under solvent-free conditions proceed so quickly and
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions

  • Daily Rodríguez-Padrón,
  • Alina M. Balu,
  • Antonio A. Romero and
  • Rafael Luque

Beilstein J. Org. Chem. 2017, 13, 1982–1993, doi:10.3762/bjoc.13.194

Graphical Abstract
  • require stoichiometric amounts of inorganic oxidants, which are highly toxic and polluting. Aiming to minimize chemical waste in these catalytic processes, the scientific community is moving towards the use of clean oxidants ("green oxidants"), such as molecular oxygen or H2O2 [39]. Thus, the use of clean
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • section we turn our attention to transition metal-catalyzed aerobic dehydrogenation of C–C and C–N bonds. Molecular oxygen is well established as an oxidant for oxidative dehydrogenation of heterocycles. These reactions occur under open air or excess oxygen pressure. They are classified as aerobic
  • oxidation. One of the early examples of such reaction was demonstrated by Han et al. in 2006 [84]. Here in pyridines 71 and pyrazoles 72 were synthesized in excellent yield by the oxidation of 4-substituted Hantzsch 1,4-dihydropyridines 69 and 1,3,5-trisubstituted pyrazolines 70 via molecular oxygen. The
  • the aforementioned heteroaromatic compounds in a one-pot reaction from aldehydes with 2-aminobenzylamines and 2-aminobenzyl alcohols with molecular oxygen as the oxidant (Scheme 22). It is a simple and environmentally benign protocol for the generation of these heterocycles (Scheme 22) in excellent
PDF
Album
Review
Published 15 Aug 2017
Graphical Abstract
  • conditions established for WelO5 and AmbO5 [18]. For a 100 µL scale reaction, WelO5* (20 µM final concentration) rapidly converted circa 50% of 1 and 2 (0.5 mM final concentration) to their chlorinated derivatives 1a and 2a within 20 min in the presence of cosubstrate 2OG, cofactor Fe(II) and molecular
  • oxygen (Figure 2a, bottom two lanes). Under identical conditions, WelO5 showed a comparable conversion rate of 2 to 2a but was much more sluggish towards 1 (Figure 2a, top two lanes), consistent with our previous observation [17]. While a full steady state kinetic analysis remains challenging due to the
PDF
Album
Supp Info
Letter
Published 16 Jun 2017

Transition-metal-catalyzed synthesis of phenols and aryl thiols

  • Yajun Liu,
  • Shasha Liu and
  • Yan Xiao

Beilstein J. Org. Chem. 2017, 13, 589–611, doi:10.3762/bjoc.13.58

Graphical Abstract
  • Pd(OAc)2 as catalyst and molecular oxygen as oxidant, however, the reaction suffered from low yield (2.3%) [49][50]. In 1997, Seo and co-workers reported an iron-HPA (heteropoly acid)-complex-catalyzed protocol for oxidation of benzene to phenol [51]. In 2005, the Rybak-Akimova group reported that
  • DMF in the presence of Cs2CO3 and molecular oxygen, affording 2-(phenylthio)phenols as final products (Scheme 29). A preliminary mechanistic study showed that molecular oxygen participated in the formation of the hydroxy group. This protocol was further applied to the synthesis of quinines. 1.2.2
  • did not work with ortho-substituted arenes. In 2013, Jiao and co-workers reported a hydroxylation protocol for (2-pyridyl)arenes using PdCl2 and N-hydroxyphthalimide (NHPI) as catalyst and molecular oxygen as oxidant [60]. (2-Pyridyl)arenes were converted to the hydroxylated products in toluene at 100
PDF
Album
Review
Published 23 Mar 2017

Novel β-cyclodextrin–eosin conjugates

  • Gábor Benkovics,
  • Damien Afonso,
  • András Darcsi,
  • Szabolcs Béni,
  • Sabrina Conoci,
  • Éva Fenyvesi,
  • Lajos Szente,
  • Milo Malanga and
  • Salvatore Sortino

Beilstein J. Org. Chem. 2017, 13, 543–551, doi:10.3762/bjoc.13.52

Graphical Abstract
  • successfully utilized in photodynamic therapy (PDT). This minimally invasive therapeutic approach has proven to be very well-suited for cancer and bacterial diseases treatment. The PDT is based on the combination of three main components: visible light, a photosensitizer (PS) and molecular oxygen [4][5]. After
  • being excited with visible light, the PS – while reverting to the ground state – transfers the energy of its lowest excited triplet state to nearby molecular oxygen. This leads to an in situ generation of singlet oxygen (1O2), which is the main responsible species for cytotoxic reactions in cells [6
  • tentatively be attributed to populations of fluorophores probably interacting in a different way with the CD cavity. As outlined in the introduction, singlet oxygen, 1O2, is the key species involved in PDT and it is generated by energy transfer from the excited triplet state of a PS and the nearby molecular
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2017
Other Beilstein-Institut Open Science Activities