Search results

Search for "electromigration" in Full Text gives 27 result(s) in Beilstein Journal of Nanotechnology.

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • irradiation. Their findings on the volume decrease or increase of silica crystalline and amorphous phases were explained by the electromigration of oxygen atoms and densification of surface regions. Yet, taking into account the supplied data one cannot exclude the presence of water residues in the SEM chamber
PDF
Album
Full Research Paper
Published 07 Feb 2024

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • resistance to electromigration and lowers the tendency to undergo diffusion, giving a higher stability in environments involving both elevated temperature and high current densities [1][3]. In current technology nodes with device dimensions below 10 nm, electron scattering becomes the dominant factor in
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • removable element to prepare RF switches. The response time of metal RF switches is about 1–15 µs, and the pull-in voltage is about tens of volts, which cannot meet the demand. Also, the metal lattice stability is poor. Electromigration or micro-welding adhesion failure might easily occur. GR-NEM switches
PDF
Album
Review
Published 12 Apr 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • electrochemistry workstation. Orthogonal experimental design The copper nanomorphology was controlled by variation of solution concentration, pH value, current density, and temperature. The current density affects the speed of electromigration. The orthogonal test (Table 1) was designed regarding four parameters
PDF
Album
Full Research Paper
Published 15 Mar 2022

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • -quality, conformal thin films with low resistivity, to avoid many of the typical failure mechanisms such as electromigration [42][43]. This means that 3D migration of atoms (agglomeration) should be inhibited, while 2D growth (wetting) should be promoted. In contrast, in catalysis applications the ratio
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • computational study of a change in the morphology of a growing thin film during condensation caused by electromigration effects. It will be shown, that separated circular adsorbate islands, realized in an isotropic system, become elongated in the direction of the applied electrical field. We discuss the
  • dependence of the critical value of the strength of the applied electrical field, responsible for the formation of percolating adsorbate islands, on main control parameters. This study provides insight into details of electromigration effects during the self-organization of adatoms into percolating adsorbate
  • islands during condensation from the gaseous phase. We will show that the elongated morphology of adsorbate islands remains stable if the electric field is turned off. Keywords: adsorptive systems; electromigration; numerical simulations; pattern formation; thin films; Introduction The processes of
PDF
Album
Letter
Published 13 Jul 2021

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • , Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany 10.3762/bjnano.11.55 Abstract Even though there have been many experimental attempts and theoretical approaches to understand the process of electromigration (EM), it has not been quantitatively understood for ultrathin
  • shell effects, can be discriminated. Although the directional motion of atoms during EM leads to specific properties such as the instabilities mentioned, similarities to mechanically opened contacts with respect to cross-sectional stability were found. Keywords: electromigration; focussed ion beam
  • break junctions (MCBJ), scanning tunneling microscopy (STM) and electromigration (EM). All these techniques rely on conductance histograms as a statistical tool in order to find the configurations of high stability. Conductance histograms provide information about the most probable conductance values
PDF
Album
Full Research Paper
Published 22 Apr 2020

Filling nanopipettes with apertures smaller than 50 nm: dynamic microdistillation

  • Evelyne Salançon and
  • Bernard Tinland

Beilstein J. Nanotechnol. 2018, 9, 2181–2187, doi:10.3762/bjnano.9.204

Graphical Abstract
  • completely filled using this new technique. The nanopipettes are first filled with pure water, which is later replaced with the desired electrolyte via electromigration. Electrical measurements are used to check that filling is complete. Keywords: current rectification; distillation; filling; nanopipette
  • . However, the tip of the nanopipette is still filled with pure deionized water. The intensity level does not correspond to the stationary regime, instead it changes slowly with diffusion. To ensure that electrolyte concentration reaches its nominal value throughout the nanopipette, electromigration is
  • performed (Figure 2b), i.e., ion exchange is enforced through voltage applied for a given time. Here, electromigration is performed by maintaining the power supply at V = −300 mV over a period of time of t = 10 min. During these 10min, the intensity level increases from I−300mV = −30 pA to an upper limit of
PDF
Album
Full Research Paper
Published 16 Aug 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • for producing these functional units based upon the electromigration of metal constrictions. Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We
  • and for interconnecting an electronic control layer to a photonic architecture. Keywords: electromigration; Fowler–Nordheim; hot-electron emission; inelastic electron tunneling; optical antennas; transition voltage; tunnel junction; Introduction The constant evolution of information technologies
  • antennas by employing the electromigration of metal nano-constrictions. The atomic-scale gap acts as an active feedgap operating a transduction between an electrical signal and an optical radiation. We electrically characterize the device and deduce the relevant properties using the standard description of
PDF
Album
Full Research Paper
Published 11 Jul 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • -induced deformation, and electromigration resistance which is higher than for aluminum [24][25][26][27]. Copper nanostructures, especially nanowires, are applied in opto-electronic devices, solar cells, field-emission displays, catalysis, electronic skins, and sensor devices. Moreover, they can find
PDF
Album
Full Research Paper
Published 01 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • contacts, or even two fine tips when applying the mechanically controllable break junction (MCBJ) technique [26][27][28]. Also, when using planar electrodes, e.g., in the electromigration technique [29], the very ends show features with corrugations of atomic size. The typical voltage applied when
PDF
Album
Full Research Paper
Published 22 Jul 2016

Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

  • Richard L. McCreery

Beilstein J. Nanotechnol. 2016, 7, 32–46, doi:10.3762/bjnano.7.4

Graphical Abstract
  • temperature extremes and is less prone to electromigration and oxidation than most metals [43]. The covalent bond between an sp2-hybridized carbon substrate and the aromatic molecular layer represented by the G9–AB model structure is well characterized, but the nature of the “contact” between the top eC layer
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2016

Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

  • Carlos Sabater,
  • Carlos Untiedt and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2015, 6, 2338–2344, doi:10.3762/bjnano.6.241

Graphical Abstract
  • do work on the ions, and which is linked to the wind force often discussed in the context of electromigration [8]. The second is a force originating in the Berry phase of the electrons, which works just like a Lorentz force: it is directed perpendicular to the velocity of the ions, keeping them in
  • periodic orbits. This so-called ‘Berry force’ has never been demonstrated in experiment. In fact, also the first component of the non-equilibrium force is only known from electromigration experiments that detect mass transport of atoms or ions. Truly microscopic experiments probing the forces at the scale
PDF
Album
Full Research Paper
Published 09 Dec 2015

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • current carriers into atomic motion. Large current densities can generate significant additional forces on atomic nuclei [1][2][3], resulting in a class of phenomena known as electromigration: atomic rearrangements and mass transport driven by current flow [4][5]. Recent work has drawn attention to
PDF
Album
Full Research Paper
Published 13 Nov 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • dropped by four to five orders of magnitude to hundreds of kiloohms. At the current densities, used in the experiments (less than 0.1 MA/cm2) the migration process of Cu atoms is rather slow. Gazzadi and Frabboni [47] reported grain formation and electromigration in Pt–C material at current densities
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • graphitized C. The breakdown current density is found at 2.1 × 107 A/cm2. The role played by resistive heating and electromigration in these transitions is discussed. Keywords: cobalt; electromigration; focused electron beam induced deposition (FEBID); metallic nanowires; Introduction The growing importance
  • and electromigration effects [21][22] come into play and are a major cause of failures. In this work, we deposit free-standing suspended nanowires (SNWs) using Co–carbonyl precursor (Co2(CO)8), and study their behavior under high electrical current density, following the same approach used for Pt
  • (right) to anode (left), suggesting that an electromigration effect is involved in the structural transition. This effect occurs in metallic micro- and nanowires under high current densities (106 to 107 A/cm2) and consists in the dragging of metal ions along the electron current direction due to momentum
PDF
Album
Full Research Paper
Published 11 Jun 2015

Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?

  • Tonatiuh Rangel,
  • Gian-Marco Rignanese and
  • Valerio Olevano

Beilstein J. Nanotechnol. 2015, 6, 1247–1259, doi:10.3762/bjnano.6.128

Graphical Abstract
  • molecular junctions in laboratories, such as electromigration methods, mechanical strain and scanning tunneling microscopy to open small gaps between gold leads that can host (with a small but non-negligible probability) single molecules from a wetting solution [1][2][3]. The complete characterization of
PDF
Album
Full Research Paper
Published 02 Jun 2015

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

  • Andrea Candini,
  • Nils Richter,
  • Domenica Convertino,
  • Camilla Coletti,
  • Franck Balestro,
  • Wolfgang Wernsdorfer,
  • Mathias Kläui and
  • Marco Affronte

Beilstein J. Nanotechnol. 2015, 6, 711–719, doi:10.3762/bjnano.6.72

Graphical Abstract
  • feedback loop in order to stop the current immediately after the opening of the junction. We used the same method previously employed for the electromigration of gold nanowires [26]. A typical example of the process is visible in Figure 1a. Above a certain voltage value, the I–V curves become strongly non
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • times can give rise to complex dynamic responses. Hence, bias-induced charge dynamics (e.g., electromigration and ion diffusion) as well as steric effects [6][7][8][9] and electrochemical processes at larger biases, need to be detected and separated experimentally in order to fully characterize the
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • ., electromigration [32][33]). Limitations of manipulations inside a SEM. At the end we would like to briefly discuss some limitations or drawbacks of inside-SEM nanomanipulations. The scanning rate of the electron beam is limited to a few hertz, therefore only relatively slow processes can be visualized (e.g., the
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • as water and oxygen. Under the applied conditions, the water layer may be several monolayers thick. Once the current rises the initial surface conditions will be changed due to electrochemical processes, electromigration and local power dissipation. One of the major changes will be a reduction of the
PDF
Album
Full Research Paper
Published 21 Mar 2013
Graphical Abstract
  • crystallinity and morphology of nanowires of various materials. 2.1 Copper nanowires Copper is an important material for the microelectronic industry due to its low resistivity and its low vulnerability to electromigration, a phenomenon that produces voids in wires and ultimately causes failure. Copper micro
PDF
Album
Review
Published 17 Dec 2012

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • stability of the chosen conductance levels, are unique features of the electrochemical method [4][5][6][7][8][9][10]. Compared with mechanical setups, and separate from purely electrochemical methods, electromigration is another promising method to produce bistable contact configurations between integer
PDF
Album
Full Research Paper
Published 03 Nov 2011

Nonconservative current-induced forces: A physical interpretation

  • Tchavdar N. Todorov,
  • Daniel Dundas,
  • Anthony T. Paxton and
  • Andrew P. Horsfield

Beilstein J. Nanotechnol. 2011, 2, 727–733, doi:10.3762/bjnano.2.79

Graphical Abstract
  • to nuclei, and are familiar from the field of electromigration [1]. An alternative, but fundamentally equivalent, way to think about them is as nonequilibrium corrections to interatomic bonding forces. In considering these forces, it is often convenient to adopt the Born–Oppenheimer approximation
  • ][9][10]. The combined effect of the two is the driving force behind electromigration-type phenomena [2][6][7]: Current-induced forces modify atomic migration barriers; together with local heating, this results in thermally activated current-induced atomic rearrangements, or even failure. Recently, a
  • elastic scatterer in its path. Finally, recognising as the electron-wind force in electromigration, we have Therefore, we have shown from first principles that the point of departure, Equation 1, is an algebraic statement of Sorbello’s thought experiment [1] to prove that this force is, in general, a
PDF
Album
Full Research Paper
Published 27 Oct 2011
Other Beilstein-Institut Open Science Activities